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Introduction

Strict regulations on emissions leads to lean premixing
This trend will accelerate for hydrogen and oxy-fuel due to 
high flame temperatures
Premixing tends to give rise to thermo-acoustic 
instabilities

Noise
Reduced combustion efficiency 
Destruction of equipment
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Introduction (cont.)

This again has lead to a strong interest in thermo-acoustic 
instabilities

the mechanism causing the instability
methods of control, both passive and active
means to guide the design of both the equipment and of the 
control methods

Practically impossible to obtain with analytical tools only
Extensive experimental testing is very costly
Need numerical simulations
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Experimental Setup

2D sudden expansion 
(exp. ratio: 10)
Premixed combustion
Oxidant:

Different O2/CO2 mixtures

Fuel: CH4

Parameters:
Re: Varied
ER: Varied

Ditaranto & Hals, Combustion and Flame, 146 (2006), 493 
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Mechanism

If the instantaneous heat release is at its peak at the same time as 
there is a peak of the acoustic pressure the acoustic wave will gain 
energy (Rayleigh criterion for combustion oscillations*).
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Simulation tools

The linear approach (wave equation)
Network models (e.g. Polifke, Sattelmayer)
No limit cycle

The 3D non-linear approach
URANS
LES
DNS

The 1D non-linear approach
Flame in straight pipe (Polifke*)
Variable cross section (This work)

* Polifke et al., Journal of sound and vibration, 2001, 245, 483
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The wave equation (linear approach)
This is the workhorse of numerical combustion instability studies!
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The SINMA model

Non-linear Navier-Stokes solver
One dimensional, but incorporate variable cross sections

Essentially DNS
Sixth order finite difference discretization
Third order Runge-Kutta time stepping

No hydrodynamic instabilities
Use artificially large viscosity and diff. parameters to stabilize 
simulation
Acoustics and flame model not affected by this

Use the “Attached Dynamical Model” (ADM) which is a 
quasi 1D realization of the “G-equation model” or the 
“flame front model”
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The quasi 1D equations
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Cold rig Velocity power spectrum in 
combustion chamber

Cold flow simulations give good fit between resonant 
frequencies for  experimental (black arrows), linear 
simulation (red arrows) and non-linear simulation (blue 
line) results 
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Thermo-
Acoustic 
Modes 
Cycles
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The attached dynamical model (ADM)

Assume the flame to be 
attached
Based on the “G-equation 
model” or “the flame front 
model”
All the turbulence has been put 
into fT
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Quenching the exponential growth

Enters “linear” growth when flame tip goes into the duct
What give limit cycle

Max flame length *
Max strain, i.e. max flame velocity
Acoustic losses **
Combination of the above
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*A. P. Dowling, J. Fluid Mech., 1997, 346, 271
**P. Davies et al., J. Sound and Vib., 1980, 72, 543
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Quenching by acoustic losses

Envelope of velocity at single point in 
premixer for various reflection 
parameters. The red line is the envelope 
of the left plot

Velocity at single point in premixer
as function of time for a reflection 
coefficient of 0.985
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Power spectrum

By adjusting the temperature we 
get very similar power spectra from 
experiments (red) and numerics
(blue)

No cooling in the model
Uneven temperature distribution in 
the combustor

Spectral decay as function of 
frequency is correct
By tuning n and τ we get 
interesting results also with linear 
model Re(f_num)   Im(f_num)

170.95890    -0.02527
242.86390     3.43053
342.76354    -0.00887
473.34227     0.89771

Linear code
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Acoustic velocity 
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Linearized with n-τ vs. SINMA
Linear model with n-τ

n-τ heat release model
n and τ are ‘free’ parameters that must be given as input
Generally n and τ are frequency dependent

Solves for the unstable (and resonant) frequencies
Give solution in frequency domain only
Does NOT solve for level of saturation (non-linear regime)

SINMA with ADM
ADM has no free parameters
Solves for the unstable (and resonant) frequencies
Give solution in the time domain

Can then be Fourier transformed to get the spectral solution
Limit cycles are part of the solution
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Applications

Gain understanding of the fundamental physics of the 
instability and its saturation mechanism
A digital lab for testing non linear models of active 
control**
Development of simple combustors
Guideline for future 3D LES simulations
Finding the transfer matrixes of multi-ports *

* Polifke et al., Journal of sound and vibration, 2001, 245, 483
**Ongoing PhD at NTNU, D. Snarheim (prof. B. Foss) 
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Conclusion

SINMA reproduce experimental results
ADM give good results without any free parameters
For the case studied here acoustic losses seems to be the 
main (or at least one of the strongest) contributor to the 
level of the limit cycles
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