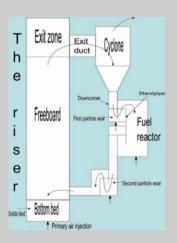

Chemical Looping Combustion of Natural Gas with CO₂ Capture: Macroscopic Fluid Dynamics Analysis

Arne Løhre Grimsmo*, Jana P. Jakobsen, Jørn Bakken SINTEF Energiforskning AS, Trondheim Norway *Norwegian University of Science and Technology, Trondheim, Norway

Chemical Looping Combustion

Modeling strategy


Model structure

Circulating Fluidized Bed CLC test rig

Cold flow laboratory unit

Discrete modeling zones

Future work

Fluid dynamics

- Data from the cold flow unit:
- Pressure drop
- Solids circulation rates
- Distribution of solids

Later also RTD experiments:

- Mean residence time
- Residence time distribution

Kinetics

Kinetic experimen
Kinetic models

Reactor Model

Fast fluidization &

Dubbling huidization

- Mass & heat balances
- Mass & Heat |

1.5

0.5

00

5000 10000 15000

(a) u₀ = 4.2 m/s, G₂ = 59 kg/(m² s)

> 10000 ue [Pa]

> > 0.65

15000

Flux vs. mass distribut

0.7 M_{riser} / M 0.75

5000

2

1.5

Å 0.5

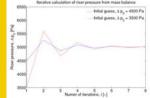
0

50

Is flux, G_a [kg/m²s]

10

E


Model properties

- Implemented in MATLAB
- Flexible object oriented

Model input

• geometry of the unit

- · gas and particle properties
- operational parameters

Modeling results

Iterative calculation

- pressure balance
- mass balance
- correlations for Δp

Pressure profile

- 2 fluidization velocities
- 105 kg total bed mass

Operational map

- Independent variables
- gas velocity riser
- total mass of solids

Dependent variables • solids flux

mass distribution

Brownedgenent presented work forms a part of the BIGCO2/BIGCLC project, performed under the strategic Norwegian research gram Climit. The authors acknowledge the partners: StatoliHydro, GE Global Research, Statkraft, Aker Kvarner, all, TOTAL, ConcoPhilips, ALSTOM, the Research Council of Norway (178004/I30 and 176059/I30) and snova (182070) for their support.