EOR and CO₂ disposal – economic and capacity potential in the North Sea

Torleif Holt and Erik Lindeberg SINTEF Petroleum Research, Trondheim Norway

The 4th Trondheim Conference on CO₂ Capture, Transport and Storage October 16 - 17 2007, Trondheim Norway

Acknowledgements: This work forms a part of the BIGCO2 project, performed under the strategic Norwegian research program Climit. The authors acknowledge the partners: StatoilHydro, GE Global Research, Statkraft, Aker Kværner, Shell, TOTAL, ConocoPhillips, ALSTOM, the Research Council of Norway and Gassnova for their support

SINTEF Petroleum Research

Contents

- Field experience from tertiary CO₂ injection projects
- Predictions of CO₂ EOR and storage in the North Sea (N and UK)
 - technical economical model
 - input parameters
 - scenarios
 - main results
- Conclusions

Field experience from tertiary CO₂ injection

Results extracted from SINTEF's data base with 120 CO₂ EOR projects (pilots and full field flooding) mostly located in the Permian Basin

SINTEF Petroleum Research

Start-up of CO₂ injection projects

Incremental oil recovery vs. permeability and porosity

Incremental oil recovery vs. temperature and oil gravity

Incremental oil recovery vs. slug size

Summary of literature study

Average quantity	Sandstone reservoirs	Carbonate reservoirs
Incremental oil (% OOIP)	12.3	17.3
Gross CO ₂ util.(tonne/Sm ³)	3.1	4.0
Net CO ₂ utilisation (tonne/Sm ³)	1.9	2.0
Temperature (°C)	67	51
Reservoir depth (m)	1844	1705
Pressure (bar)	194	173
Porosity (% PV)	23	12
Permeability (md)	570	22
Oil density (°API)	35.2	34.6
CO ₂ density	641	730

Predictions of CO₂ EOR in the North Sea

technical economical model

- pipeline transport model
- EOR model
- economic model
- scenarios
- 19 Norwegian and 30 UK oil fields in the database
 - will be expanded with Danish fields

Features of the EOR model

- A simple model to predict the incremental oil production due to CO₂injection after water flooding depending on the state of the reservoir
- Based on a large number of reservoir simulations with varying process- and geological parameters
- Developed for continuous CO₂ injection only
- Assumes that water and CO₂ are injected at the same and constant flow rates
- CO₂ displaces oil miscible
- Requires a few reservoir specific input parameters
- Calculates functions for oil, incremental oil, water and gas production during CO₂ injection for each field

Ula

Years of production

The technical- economical model

The technical- economical model

- The model can be used to construct specific deposition scenarios for fields in the North Sea
- A constant amount of CO₂ is deposited during the lifetime of a scenario, excess CO₂ is injected into unspecified aquifers
- Break through CO₂ is re-injected into the reservoirs
- The model calculates incremental oil recovery and stored CO₂ in the oil reservoirs and aquifers
- Each EOR project in the scenario runs as long as the net cash flow is positive
 - incomes: EOR oil (the incremental oil only)
 - costs: CO₂, investments, operating costs
- In the figures presented here calculates a value for CO₂ that gives a zero NPV for all the EOR projects and aquifer deposition at the specified rate of return

Parameters used for economic modelling

Variable economic parameters	value	unit	
Well cost	30	mill. USD/well	
Modification of oil production system	510	USD/(bbl/day)	
Engineering costs	25	% equipment costs	
Contingency costs	25	% equipment costs	
Offshore factor	3		
Running and maintenance	5	% of equipment costs	
Energy compressor	0.07	USD/kWh	
Discount rate	7	%	
Net present value	0	USD	
Oil price	variable	USD/bbl	
CO ₂ transport cost	3.8	USD/tonne	
Aquifer deposition costs	4.0	USD/tonne	

A CO₂ deposition scenario

- Includes 19 Norwegian and 30 UK North Sea oil fields and unspecified aquifers
- Total injection rate is 178 million tonnes CO₂/year
- Project lifetime is 40 (or 30) years
- The scenario is not optimised

Results:

- Deposition profiles
- EOR production profiles
- Key economic figures
- Values for CO₂

CO₂ storage profiles in oil fields 60 USD/bbl, 40 years injection

Norwegian fields

UK fields

Incremental oil production 60 USD/bbl, 40 years injection

Norwegian fields

UK fields

SINTEF Petroleum Research

Summary of EOR project performance

60 USD/bbl, 40 years project lifetime

Item	Norway	UK	Total
Investment costs (mill. USD)	28400	30832	59232
Operating costs (mill. USD/year)	1104	1234	2338
Total oil (mill. Sm ³)	2664	2054	4718
Oil recovery (% OOIP)	56.7	67.1	60.8
EOR oil (mill Sm ³)	375	312	687
Incremental oil recovery (% OOIP)	8.0	10.2	8.8
Total stored CO ₂ (mill. ton)	3373	3881	7254
Stored CO ₂ in oil reservoirs (mill. ton)	1479	853	2332

Incremental oil recovery for tertiary CO₂ injection

The value of CO₂

CO₂ balance for 19 Norwegian CO₂ EOR projects

SINTEF Petroleum Research

The time-window for EOR projects

- The implementation of EOR projects must be done before operation of the field becomes unprofitable
- For many fields this time limit may be reached before a CO₂ infrastructure is established in the North Sea
- The benefits of CO₂ injection may therefore be lost

Unit operation cost

Future operation costs for North Sea oil reservoirs Source: www.Petoro.no

Conclusions

- CO₂ based EOR can contribute to reduce GHG emissions
- The use of CO₂ for EOR gives a value to CO₂ that can cover parts of the capture and deposition costs
- The storage potential for CO₂ in North Sea oil reservoirs in in the order of two billion tonnes
- The EOR potential is estimated to 600 to 700 mill. Sm³
- These potentials can only be realised if a CO₂ infrastructure to the North Sea oil reservoirs is established within a few years and if the oil fields are not permanently shut down in the meantime

