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1SINTEF Energy Research

IEA R&D Wind Annex XXI 
Dynamic models of wind farms for 

power system studies

John Olav Tande (SINTEF Energy Research)

2SINTEF Energy Research

Motivation

Large wind farms +100 MW are now being planned
Power system dynamic studies are required
Well developed models of “conventional components”
(gas/coal fired power stations, cables/lines, transformers)
Wind farm models need to be developed and verified
IEA Wind R&D ideal framework for coordinated effort
(cost effective, enhance know-how & confidence) 
IEA Topical Expert Meeting Newcastle, November 2001

3SINTEF Energy Research

Accurate modelling is important!
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4SINTEF Energy Research

Accurate modelling save costs!
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Accurate modelling is a challenge!
Fixed speed, stall

Fixed speed, pitch
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Objective

Overall:
Coordinated effort to develop wind farm models suitable 
for power system dynamic studies

Immediate:
Establishment of an international forum for exchanging 
knowledge
Development, description and validation of wind farm 
models
Set-up and operation of a database for benchmark testing
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Means & Results

Work-shops and meetings
(presentation of models, share know-how & experience)

Common database 
(technical data & measurements)

Bench-mark test 
(provide confidence in models)

8SINTEF Energy Research

Annex XXI Participants

Total participant works to Annex XXI: 237 man-months

In addition: UK has recently announced that UMIST will 
participate, and further Canada and Ireland are expected 
to join soon and lately also Japan and Korea have taken 
interest

Country Contracting party Participant 
Denmark Danish Energy Authority Risø National Laboratory 
Finland VTT Energy VTT Energy 
Netherlands NOVEM ECN and TU Delft 
Norway NVE SINTEF Energy Research 
Sweden Energimyndigheten Chalmers University of Technology 
USA Department of Energy NREL 
Portugal INETI INETI 
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Time schedule

Target dates:
Data collection

transfer and description of existing measurements is 31 Dec 03
data from ongoing/planned campaigns is 31 December 2004.

Model validation
consensus on benchmark test procedures  by 31 September 2004
model validation will be carried out until 31 June 2005. 

Database operation
start database operation by 31 June 2003
upload data shall be completed by 31 December 2004
database maintenance continues throughout the Annex duration

 2002 2003 2004 2005 
 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
IEA ExCo meetings  x  x  x  x  x  x  x 
Meetings/workshops x   x  x x  x  x  x  
Data collection               
Model validation               
Database operation               
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11SINTEF Energy Research

Conclusion
Broad interest - important topic

IEA Wind R&D ideal framework for coordinated effort
(cost effective, enhance know-how & confidence)

Progress is according to time schedule

Annex participants are from Sweden, Finland, Norway, Portugal, 
Netherlands, Denmark, UK and USA, whereas Canada and Ireland 
are considering to join and lately also Japan and Korea have taken 
interest

The OA suggests that the Annex may continue as planned expecting
the works to provide for confidence in wind farm models enabling
detailed grid connection assessments, saved costs and relaxing grid 
constraints so more wind power may be connected and operated
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NWTC

International Energy Agency
Annex XXI Meeting

NREL Wind Farm Monitoring Program

Yih-huei Wan

November 11, 2003
National Wind Technology Center

Boulder, Colorado

NWTC

Wind Farm Monitoring Objectives

Have actual wind power data to
• Investigate output fluctuations from large 

wind power plants and its statistical 
properties

• Study frequency distribution of wind power 
plant output variations with long-term data

• Evaluate ancillary service impacts and costs 
for wind power

• Validate wind farm models

NWTC

Approaches

• Collaborate with wind farm owners, 
operators, utilities, and regional reliability 
council

• NREL owned and installed equipment
• Through subcontractor

NWTC

Wind Farm Monitoring ProjectWind Farm Monitoring Project
(Total capacity ~875 MW)(Total capacity ~875 MW)

Lake Benton, MN
Lake Benton II
GE Z50/104 MW

Lake Benton, MN
Buffalo Ridge Sub
~ 250 MW

Storm Lake, IA
Buena Vista Sub
GE Z50/114 MW

Taylor County, TX
Trent Mesa
GE 1.5MW/150 MW

Pecos County, TX
Indian Mesa
Vestas V47/83 MW

Upton County, TX
King Mountain
Bonus 1.3MW/80 MW

Colberson County, TX
TWPP
Kenetech 330/35 MW

Vansycle, OR
Mitsubishi MWT600
25 MW

Condon, OR
Mitsubishi MWT600
25 MW

Klondike, OR
GE 1.5MW/25 MW

WA-OR Border
Stateline
Vestas V47/90 MW

NWTC

Monitored Wind Farms

Midwest
• Lake Benton II (Lake Benton,MN) GE Z50/104 MW
• Buffalo Ridge Substation (Lake Benton, MN) 250 MW
• Buena Vista Substation (Storm Lake, IA) GE Z50/113 MW

Texas (collaboration with ERCOT/Electrotek)
• King Mountain (Upton County, TX) Bonus 1.3MW/80 MW
• Indian Mesa (Pecos County, TX) Vestas V47/83 MW 
• Trent Mesa (Taylor County, TX) GE 1.5 MW/150 MW
• TWPP (Colberson County, TX) Kenetech 330/35 MW

Northwest (through data sharing with BPA)
• Vansycle (OR) Mitsubishi MWT600/25 MW
• Stateline (WA-OR border) Vestas V47/90 MW
• Condon (OR) Mitsubishi MWT600/25 MW
• Klondike (OR) GE 1.5MW/25 MW

Total approximately  875 MW

NWTC

Wind Farm Data Collected

• Time-synchronized 1-second real and 
reactive power and line voltages (BPA data 
set contains only time-synchronized 2-
second real power) 

• Event-triggered, 10-second P, Q and V 
waveforms at sampling rate of 120 Hz from 
4 monitored Texas wind farms
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Wind Farm Data Collected (cont.)

• More than 3 years of continuous data from 
Lake Benton II; 2 years of data from 
Buffalo Ridge and Storm Lake; data from 
Northwest starting 2002; Texas data starting 
2003

NWTC

Program Status

• Lake Benton II monitoring will continue
• Subcontract for Buffalo Ridge and Storm Lake 

data collection has been extended until fund runs 
out; a new subcontract will be put in place 
afterward (FY2004 budget request)

• Subcontract for monitoring Texas wind farms in 
calendar year 2004 is under negotiation; ERCOT 
will continue the work in 2005

• Data sharing with BPA will continue 

NWTC

What Have Been Learned

• Despite the stochastic nature of wind power, the 
power changes are not totally random, and 
fluctuations are within narrow ranges

• Analysis of output correlation among wind power 
plants shows significant spatial variations

• Wind power persistency and correlation between 
adjacent wind power plants suggest the feasibility of 
forecasting wind power 

• Provide realistic wind power data for system 
operation and impact studies

NWTC

What Have Been Learned (cont.)

Data have been used for
– Methods and analytic studies

• Regulation and metrics for allocating to generators/loads 
(Kirby and Hirst, ORNL)

• Hirst’s market and PJM studies
• Milligan’s Load following and imbalance study of Iowa

– Operating impact case studies
• Electrotek’s Xcel/Lake Benton II study for UWIG
• Hirst’s study for BPA

– Wind farm output forecasting studies
• Milligan’s statistical wind power forecast

NWTC

Texas Wind Power Plants
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Midwest Wind Power Plants

Storm Lake & Lake Benton

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0:
00

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

(HH:MM)

(k
W

)

Lake Benton II
Storm Lake
Combined



3

NWTC

Northwest Wind Power Plants

Northwest Wind Power Plants
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Geographic Diversity of Wind Power

Combined Output
(1-minute Average Power)
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 175/13.5  109/44.2

 191/10.1

222/2/2

NWTC

Correlation Coefficients

 STL CON KLN  LB II SL MW IM KM TM TWPP TX 
VNC 0.94 0.76 0.66  -0.05 -0.01  0.11 0.03 0.05 0.20  
STL  0.81 0.67  -0.05 -0.01  0.11 0.07 0.03 0.13  
CON   0.57  -0.03 -0.05  -0.05 -0.04 -0.14 0.14  
KLN     -0.05 -0.01  0.18 0.19 0.03 0.31  
NW       -0.09     0.07 
LB II      0.81  0.10 0.05 0.10 -0.13  
SL        0.24 0.22 0.19 0.01  
MW            0.14 
IM         0.76 0.50 0.05  
KM          0.49 -0.03  
TM           -0.01  
 

VNC: Vansycle STL: Stateline Con: Condon KLN: Klondike

LB II: Lake Benton II SL: Storm Lake

IM: Indian Mesa KM: King Mountain TM: Trent Mesa TWPP: Texas Wind Pwr Proj

NW: Combined Northwest MW: Combined Midwest

TX: Combined Texas

NWTC

Weekly Output Power Example
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Cross Correlation between
Lake Benton and Storm Lake
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Statistical Wind Power Forecasting

Comparison of Forecast Errors: Jan/Feb
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NWTC

FY2004 Plan

• Add wind power plants in the Rocky Mountain 
region and eastern states to the monitoring 
program

• Using data and power system simulation 
program to simulate the electric power 
operations and the impacts of wind power 
forecasting errors

NWTC

Wind Power Data Applications

Consultants
• United Technology Research Center: Wind power fluctuations
• EnerNex Corporation: collaborating with other data for Blackout analysis
• SSESCO: wind power forecasting
• Wind Utility Consulting: Midwest Cooperative purchase offset and storage 

analysis
• Platts Research Consulting/RDI: Integration of coal and wind for 

transmission
• AWS Scientific/TrueWind Solutions: Wind power forecasting
Utilities
• WAPA Rocky Mountain Region: rate analysis
• Electrotek/Great River Energy: Resources planning
• FPL
• TVA
• Alliant Energy

NWTC

Conclusions

• Continue to work with utilities and industry 
partners to expand the wind farm 
monitoring network (e.g., California, Rocky 
Mountains, Eastern wind farms)

• Support system impact and ancillary 
services analyses and wind farm model 
validation

NWTC

Selected References and Links

• Milligan, M. (2003). Wind Power Plants and System Operation in the Hourly Time Domain: 
Preprint . 24 pp.; NREL Report No. CP-500-33955. 
http://www.nrel.gov/docs/fy03osti/33955.pdf

• Hirst, E. (2001) Transactions of Wind Farms with Bulk-Power Operations and markets.
http://www.ehirst.com/PDF/WindIntegration.pdf

• Hirst, E. (2002) Integrating Wind Energy with the BPA Power system: Preliminary Study. 
http://www.ehirst.com/PDF/BPAWindIntegration.pdf

• The Utility Wind Interest Group (2003) Characterizing the Impacts of Significant Wind 
Generation Facilities on Bulk Power system Operations Planning. 
http://www.uwig.org/UWIGOpImpactsFinal7-15-03.pdf

• Kirby, B., Hirst, E. (2000) Customer-Specific Metrics for the Regulation and Load 
Following Ancillary Services. ORNL/CON-474. 
http://www.onrl.gov/~webworks/cpr/rpt/105927.pdf

• Wan, Y.; Bucaneg, D. (2002). Short-Term Power Fluctuations of Large Wind Power Plants; 
NREL Report No. CP-500-30747
http://www.nrel.gov/docs/fy02osti/30747.pdf

• Wan, Y. (2003) Output Power Correlation between Adjacent Wind Power Plants; NREL 
Report No. CP-500-33519.

• Milligan, M., et. Al. (2003) Statistical Wind Power Forecasting Models: Results for U.S. 
Wind Farms; AWEA Windpower 2003, Austin, TX.
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Wind Turbine Systems

Fixed-speed, stall or active-stall controlled wind turbine 
induction generator
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Department of Electric Power Engineering Tomiã�3HWU

Wind Turbine Systems

Variable-speed, pitch-controlled wind turbine with doubly 
fed induction generator
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Wind Turbine Systems

Variable-speed, pitch-controlled wind turbine with power
electronic converter in the stator circuit
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Wind field: wind shear, turbulence ( temperature profile, terrain, moisture, coherence,
low-level jets, wakes …)

Aerodynamic conversion: blade profile, dynamic hysteresis

Drive train: Blade, hub, primary shaft, gearbox, secondary shaft, generator,
suspension of components

Wind turbine structure: tower, nacelle

Generator: Saturation, non-sinusoidal effect, iron losses, skin effect

Generator control system: flux, speed & position sensing, control algorithm, 
non-idealities of power electronic valves

Grid connection: Transformer, line capacitance, resistance and inductance

Possible components of a wind turbine model



Chalmers University of Technology
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Presentation of model

Aim:
•Model shall be possible to implement in simulation programs
•Test operation with parameters from example
•Possible to compare result with an examples

Needs:
•Model description in words and equations
•Usage and limitations of model
•Data for an example and simulation results
•If possible, measurements to compare with
•If possible, Matlab/simulink code with data and result according to measurem.
•If possible, inform where the model is implemented
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Soft shaft

Power spectrum: Green:soft shaft

Black: stiff shaft
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Model of induction generator with capacitor and grid

Grid and capacitor ought to be included



Chalmers University of Technology

Department of Electric Power Engineering Tomiã�3HWU

Models to deliver

5+4–order model of induction generator with capacitor, grid and soft shaft

5–order model of induction generator 

3–order model of induction generator (stator flux transient neglected)

1–order model of induction generator (stator and rotor flux transient neglected)

DFIG-coming years.

Full size converter wind turbine-coming years.
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Output active power - Alsvik
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Output active power – Alsvik

frequency content
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T T T
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measured

Alsvik wind turbine – measured P and Q
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measured

simulated

Alsvik wind turbine – stiff voltage supply
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measured

simulated

Alsvik wind turbine – grid voltage supply
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Fault response of Alsvik wind turbine

- measured data

U
 [-

]
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Fault response of Alsvik wind turbine

- measured data

- 3rd order model
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- measured data

- 3rd order model

Fault response of Alsvik wind turbine

- 5th order model
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- measured data

- 3rd order model

Fault response of Alsvik wind turbine

- 5th order model

- 5th order model + soft shaft
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Measurements

Description of: Site, wind turbine, measurement system 

Signal list, sensors, signal gains, filter, sample rate, 

Type of operation: Normal, faults

Example of reading Matlab-code or …..

Example of plots
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Alsvik wind farm
stall-regulated, fixed-speed system
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Shaft information (referred to high speed shaft): 
Jt=103 kgm2

Jm=4.5 kgm2

k= 2700 Nm/rad

Generator: 
U=415 V, f= 50 Hz,
Number of pole-pairs: 6
Rs=0.0092 Ω, Rr=0.0061 Ω
Xm=6.7 mH, Xsl=186 µH, Xrl=427 µH

Grid data (10 kV side):
R=6.5 Ω, X=7.1 Ω

Grid data (including transformer, 400 V side):
R=0.0076 Ω, X=0.0209 Ω
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Data acquisition:

Sampling speed 62.5 Hz:
ACC1=Accelerometer signal in nacelle direction 
ACC2= Accelerometer signal in edgewise direction
ACC3= Accelerometer signal in torsional direction
Pkort=Active power, high bandwidth
Pkortbinary= Active power, high bandwidth (special scaling)
Qkort= Rective power, high bandwidth
Qkortbinary= Reactive power, high bandwidth (special scaling)
edge=Shaft torque determined from blade-root signals;
flap1=flap-directional stress in blade 1
flap2= flap-directional stress in blade 2
flap3= flap-directional stress in blade 3
time1=62.5 Hz time vector
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Sampling speed 31.25 Hz:

T1=Tower moment in nacelle direction 6.9 m below centra
T2= Tower moment in nacelle direction 4.9 m below centra
T3= Tower moment in cross nacelle direction 6.9 m below centra
T4= Tower moment in cross nacelle direction 4.9 m below centra
T5=Torsional moment, positive in clockwise direction (seen from above)
pow4=Power turbine 4 (2 Hz bandwidth)
WD=Wind direction 
WS2=Wind speed at hub height
NacD=Nacelle direction
newangle=Rotor position
time2=31.25 Hz time vector
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Sampling speed 2 Hz:

Pow1_slow= Power turbine 1 (2 Hz bandwidth)
Pow2_slow= Power turbine 2 (2 Hz bandwidth)
Pow3_slow= Power turbine 3 (2 Hz bandwidth)
Pow4_slow= Power turbine 4 (2 Hz bandwidth)
WD_slow= Wind direction)
WS1_slow= Wind speed at bottom of rotor disc
WS2_slow= Wind speed at hub height
WS3_slow= Wind speed at top of rotor disc
time3=2 Hz time vector
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File names:

The wind direction and wind speed is indicated in the file name, in addition where 
more then one file existed for a specific direction and wind strength up to three files 
are stored which is marked with _1 to _3 at the end of the file. A file containing 
information using 8 degrees wind direction and 11.5 m/s is named:

WD008WS115_1

While a file with data from a situation of 5 m/s and 313 degrees wind direction is 
named :

WD313WS050_3

Matlab M-file read file program: READ_PROFILE.M 

Used wind directions:

Five main wind directions were used:
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Name Actual wind 
direction 

Description Number of 
files 

WD075ws 70-80°  Forest winds (priority direction) 17 

WD313ws 308-318° Disturbed wind from turbine 1 68 

WD008ws 0-15° Free wind from north (shore) 43 

WD65wws 50-80° Forest winds (wider range) 20 

WD135wws 120-150° Wind passing over a 5 km forest after 10 
km of sea 

51 

WD135ws 130-140° As above, but with a minimum of 
disturbance on the wind mast 

38 

WD210ws 205-215° Disturbed wind from turbine no. 3 87 

WS255ws 250-260° Disturbed wind from turbine no. 2 61 

WD285ws 280-290° Free wind 78  
 

 
Contact information

Torbjörn Thiringer, Chalmers University of Technology, 

torbjorn.thiringer(at)elteknik.chalmers.se (anti spam mail address)
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Fault response of Alsvik wind turbine

- measured data

U
 [-
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Jung, Vestas V52 / 850kW

� pitch regulation - OptiTip®

� variable speed (DFIG) - OptiSpeed®
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Jung – DAQ system
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Jung – high wind speed operation
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Response to smaller voltage dips

Jung DAQ

Vestas V52

Alsvik
simulation
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Conclusions

Continuous impact

- mainly fixed-speed systems are of interest

- model of FSS WT is suggested

- impact of grid is shown

Fault response

- FSS: 3rd or 5th order model of induction machine + soft shaft representation

- full power PEC: no dynamic description, programmed response

- DFIG: small voltage dip ⇒ PEC like behavior

big voltage dip ⇒ induction machine behavior
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Wind turbine modelling using PSCAD, 
Simulink and ADAMS

Bettina Lemström
IEA Annex XXI meeting 12.11.2003

VTT TECHNICAL RESEARCH CENTRE OF FINLAND
2

VTT PROCESSES

Background

ADAMS
Detailed wind field, aerodynamic and mechanical modelling
Versatile dynamic simulation tool
but electrical side and network is lacking

PSCAD/EMTDC
Detailed electrical component and network modelling
Efficient dynamic simulation tool 
Aerodynamic and mechanical side is possible to model sufficiently 
detailed for network simulations, but not readily available 

Simulink
Very convenient for control system modelling

VTT TECHNICAL RESEARCH CENTRE OF FINLAND
3

VTT PROCESSES

Objective

Different models & tools working simultaneous together enables to study
what mechanical phenomena are transferred to the electrical side
the influence of network disturbances to the mechanical side
the impact of control actions and development of new control strategies

The purpose is not to use the three programs always together but to support
development of mechanical models in PSCAD 
simple but correct modelling of network disturbances in ADAMS-Simulink

VTT TECHNICAL RESEARCH CENTRE OF FINLAND
4

VTT PROCESSES

ADAMS/WT-simulation environment

VTT TECHNICAL RESEARCH CENTRE OF FINLAND
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VTT PROCESSES

Turbine control modelling

Controls
pitch control
yaw
rotational speed
in the future smart controls of f.ex. vibration

Simulink is used to model the turbine control systems
Simulink communicates with ADAMS Wind Turbine model through 
the ADAMS Control -module

VTT TECHNICAL RESEARCH CENTRE OF FINLAND
6

VTT PROCESSES

Multidisciplinary simulation
of wind turbines and wind farms

Control

Matlab/Simulink
Pitch, speed, yaw

Dynamic 
simulation
ADAMS

Solver, View, Control

ADAMS/WT
Wind turbine 
model 
development

Aerodynamics

Wind field 
simulation

Aerodynamic 
loads

Electrical system
PSCAD/EMTDC

Wind field within 
a wind farm

Control

actions

Response

Ice loads,
wave loads

Response
Control

actions
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VTT PROCESSES
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VTT PROCESSES

Features

Simulink controls both PSCAD and ADAMS
PSCAD and ADAMS communicate through Simulink

ADAMS model is part of the Simulink model as an integrated block
PSCAD runs as a separate program

Simulink and PSCAD can be run on different computers in a local 
network
In and out blocks for communication from PSCAD to Simulink and 
vice versa are developed by VTT
Data analysis is possible in all three programs

VTT TECHNICAL RESEARCH CENTRE OF FINLAND
9

VTT PROCESSES

Future work and thoughts

To improve and test the modelling system further 
Make more detailed models in all three programs of real wind turbines
Verification by measurements

Same approach can be used in other electromotion systems
– diesel generators
– paper mills
– etc.
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1National Wind Technology Center

NREL’s Wind Farm Model Development

Eduard Muljadi

National Wind Technology Center
National Renewable Energy Laboratory

Golden, Colorado

IEA Annex XXI
Dynamic Models of Wind Farms for Power System Studies

November 10-11, 2003 at NWTC, NREL
Boulder, Colorado

2National Wind Technology Center

Project Objectives

• Facilitate the integration of more wind power into the 
utility grid.

• Gain a better understanding of the technical barriers 
impeding the integration.

• Bridge the information gaps among our stakeholders 
(utilities, wind turbine manufacturers, transmission 
owners, wind farm operators, ISOs, wind farm 
developers). 

• Provide tools and data to our stakeholders.

3National Wind Technology Center

Wind Farm Model 
Development/Validation

Related Issues
• Aggregation effect on flicker and power quality
• Energy storage impacts
• Reactive power compensation
• Machine design configuration (control, generator, power 
converter, etc.) impacts on grid stability
• Self excitation, fault current contributions, and ride-through 
capability.

Collaborations
• ERCOT (review, model development, model testing)
• Southern California Edison (wind farm analysis)
• Oak Creek Energy (storage and reactive power compensation)
• Wind turbine manufacturers – testing, analysis, control design
• WAPA (large-scale fault and grid stability analysis).

4National Wind Technology Center

Assumptions

• Different turbine has different characteristics
• Wind turbine spread all over the large area of a wind farm
• No single turbine operates at the same exact operating condition
• Aggregation of the wind turbines tends to smooth out the output 

power of the wind farm
• Utilities are interested in the behavior of the entire wind farm at 

the point of common coupling
• Survivability of the wind farm and the power systems network is 

strongly determined by the interaction between the two.
• The prime concerns about the electrical supply occur during 

extreme conditions (high wind, faults, etc.).

5National Wind Technology Center

Implementation

• Maintain characteristics of the WTG.
• Adapt the PQ characteristics of the wind farms to include 

compensations if any.
• Consider supervisory control (Wide Area Network).
• Adopt extreme conditions cases (typical faults, wind speeds, 

load changes, ramp-up/down rates) needed to test the 
WF/Power System for security and reliability.

• Make the modules comprising the turbine components to 
allow the choice of building a very complete model or to 
simplify model if necessary to speed up computing time.

• Adopt commonly used package program to implement the 
models.

6National Wind Technology Center

Maintain Characteristics of the WTG

• Cp-TSR-pitch complete or simplified
• Torque-speed of the generator 
• Torque shaft characteristic
• Relay protection settings.

1% slope,
V dependent

rpm rpm

variable 
speed

fixed 
speed

TGEN TGEN

V WIND to 
T_aero

rpm

VWINDTAEROG Box +
Shaft model

rpm
TGEN - rpm

TGEN

TGEN -PGEN

TGEN

PGEN
TSR-Cp-Pitch

CP
VBUS
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QGEN -PGEN PQ  to I
PQ

Current injected 
to the grid Power 

Network
X

n1 
turbinesVBUS

PGEN

Adapt the PQ Characteristics of the Turbine 
and/or Wind Farm to Include Compensations

IG VBUS

QwF -PWF PQ  to I
PQ

Current injected 
to the grid

VBUS

PGEN
X

n1 
turbines

IWF

IWF

Power 
Network

Additional VAR 
compensation at 
Wind Farm level.

Additional VAR 
compensation at 
Wind Farm level

PQ on 
generator 
basis

PQ on 
wind farm 
basis

Q

P

PQ for squirrel cage 
Induction Gen. 

Q

P

PQ for constant PF 
setting (Var. Speed)

V or PF 
controller

VBUS

Storage

Storage

Q

P

PWF  – QWF  
characteristic

8National Wind Technology Center

P,Q,V,I Desirable Goals:
-V ~ within range ?

-f = within range ?

-PF = k ?

-Ramp Rates ?

-I > I_max?

-PWF > Pmax

−∆V/∆t exceeded?

PCC (WF -
gateway)

PWF & QWF

commands 

Consider Supervisory Control 
(Wide Area Network)

Wind Farm

Caps.

SVC, 
statcom etc.

Storage

remote

sensors

9National Wind Technology Center

Mechanical
Dynamic

Aerodynamic

Electrical
Dynamic

Power System Network

A Single Turbine Model (STM)

Control 
Block 1

Control 
Block 2 FOR VARIABLE SPEED PITCH CONTROLLED

WIND TURBINE

10National Wind Technology Center

Power System Network

CLUSTER 1

CLUSTER 2

CLUSTER 3

CLUSTER 4

CLUSTER 5

CLUSTER 6

Aggregation of a Large Wind 
Power Plant (AWP)

ZA

ZB

ZC

ZD

Compensation

Storage

11National Wind Technology Center

Example of  IEEE 14 Bus 
Test Case

12National Wind Technology Center

Example of  IEEE 14 Bus Test Case with Wind Farms, 
Reactive Power Compensations, and Storage

AWP  1

AWP  2

SVC

cap

Storage

TCSC
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What are the Important Subjects?

STM:
• Mechanical survivability of the wind turbine during transients
• Electrical characteristics of the wind turbine during transients (power quality 
and stability)
• Mechanical-Electrical interaction (stiff/weak shaft effects on power system, and 
stiff/weak power system effects on mechanical system)
• Controllability of the wind turbine (runaway condition or dropping off the line).  

AWP:
• Ride-through capability
• Is diversity of contribution from each cluster of wind turbines important to the 
power quality and stability of the power system?
• Is the computing time too slow if we have a complete model of STM?  Or should 
we simplify the model?
• Is there any different between using single cluster (scaling up STM) and 
aggregation of multiple clusters (AWP) in terms of power quality and stability ?

Power System Network:
• How do transients in the power network affect the wind farms and the response 
of the wind farms affect the entire power network?
• How do the reactive power compensator and the energy storage affect the 
power systems? 14National Wind Technology Center

Ride-Through Capability Under 
Different Transient Conditions

15National Wind Technology Center

Time (min)

PWF

600MW/hr

1200MW/hr
1800MW/hr

0   1   2   3   4  5   6                              10   
Ramp Rate for WF > 150 MW

Power Station
Registered 
Capacity

(MW)

Maximum Power
Ramp Rate

(MW per Hour)

Maximum Change
Over 10 Minutes

(MW)

Maximum Change
Over 1 Minute

(MW)

<15 60 10 3

15-150 4x Reg. Cap Reg. Cap./1.5 Reg. Cap./5

>150 600 100 30

Frequency Range Requirement

Less than 47 Hz Wind farm should be tripped within 1 second.

47 Hz – 47.5 Hz Operation for a period of at least 20 seconds is required
each time the frequency is below 47.5 Hz

47.5 Hz – 50.4 Hz Continuous operation is required.

50.4 Hz – 52 Hz Power should be reduced at a minimum rate of 2% of 
Wind Farm output per 0.1 Hz deviation of system 
frequency above 50.4 Hz.  No additional turbines may 
be started while frequency is above 50.4 Hz.

Above 52 Hz Wind farm should be tripped within 1 second.

∆f =-6% ∆f =-5%       fo ∆f =0.8% ∆f =4%

47       47.5            50  50.4          52             Hz  

Tripped
in 1 sec.

Tripped
in 20 sec.

Continuous.

P is reduced at 
2% PWF./0.1Hz

Tripped
in 1 sec.

Example:
Ramp Rates and Frequency Requirements.

Derived from the “ Guidance Note for the Connection Wind Farms”
A draft version prepared by Scottish Hydro. 16National Wind Technology Center

Parameter Set Value Minimum 
Value

Maximum 
Value

Power 
Reduction

10% 0% 25%

Dead-band 0.1 Hz 0.0 Hz 0.5 Hz

Droop 5% 3% 20%

49.5             50.5

100% 

Power Power Power 

Freq (Hz) 

Freq (Hz) 

Freq (Hz) 

49.75  49.9    50 50.1          52.5

100% 

90% ∆PMAX= 25% 

Max dead 
band = 0.5 Hz

75% 
Max droop = 20%

Min droop = 3%

Example:
Power Reduction versus Frequency.

Derived from the “ Guidance Note for the Connection Wind Farms”
A draft version prepared by Scottish Hydro.

17National Wind Technology Center

1.0                                                        700  Time between steps (sec.)

3%                     

0.4%                     

∆V (VoltageStep)140 ms

time 

voltage

faults

1p.u.

0.15 p.u. This limit will be changed to 
0 p.u. by July 2005

1.15 p.u.
1.0   p.u.
0.9   p.u.

250                                         500                 Time (msec)

V(transmission line)

normal

Over voltage and under voltage allowance

140 ms                 360 ms

time 

voltage

Faults              Under voltage

1.0 p.u.

0.15 p.u.

0.9 p.u.

Tripped after tFAULT > 140 ms 

500 ms

Tripped after 
tFAULT > 140 ms 

(7cycles)

Tripped after 
TUNDERVOLTAGE > 500 ms (25 cycles) 

Voltage Step takes precedence 
over Ramp-Rates

Example:
Voltage requirements.

Derived from the “ Guidance Note for the Connection Wind Farms”
A draft version prepared by Scottish Hydro.

18National Wind Technology Center
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Example: Eon Voltage Profile
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21National Wind Technology Center

Plot

Time (sec)
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Example: Three Phase Short Circuit

Wind Turbine

Fault 
Condition

Stator Current (Ian)

Stator Current (Ibn)

Stator Current (Icn)

Blue traces = per phase voltages

Red traces = line currents

22National Wind Technology Center

Example: 
Start-up, Running, Offline/Self-Excited, Reconnect
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23National Wind Technology Center

Example: Wind Farm Model
w/o Reactive Power Compensation

- 11 MVAR

+ 63 MWWith 
Compensation

Without 
Compensation

24National Wind Technology Center
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Example: Wind Farm Model
Aggregation Impact

16 x1 group of turbines (no aggregation) 16 groups of turbines (with aggregation)
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Summary
Development of wind farm models:

• Generator level
• Wind farm level
• Supporting equipments (energy storage, reactive power 

compensation, etc.)
• Include relay protections.

Software used:
• Matlab, Mathcad, ACSL, PSSE, Vissim, RPMSim (Vissim based 

for hybrid system).
Case Studies:

• Dual speed WTG with induction generator
• San Clemente Island (Hybrid Diesel-Wind) project
• Self-excited induction generator for variable speed, and battery 

charging
• Permanent magnet generator WTG for battery charging, water 

pumping, grid connected
• Variable speed stall/pitch control WTG
• Aggregation impact on wind farm output
• Tehachapi wind farm
• Energy storage and reactive Power compensator.

26National Wind Technology Center

27National Wind Technology Center



12. november 2003

IEA Annex XXI: Transient events in large 
wind farm installations 1

Transient events in large wind farm 
installations

IEA Annex XXI

Poul Sørensen

Risø National Laboratory

Wind Energy Department

12. November 2003 IEA Annex XXI: Transient events in large wind farm installations 2

Outline

• Comparisons of EMTDC and DIgSILENT simulations
- Basic comparison
- Saturation
- Stator flux transients

• Validation based on measurements in Hagesholm wind farm
- Tripping of a wind turbine
- Islanding of two wind turbines
- Voltage steps

• Report: http://www.risoe.dk/rispubl/VEA/ris-r-1331.htm

• Funded by (west) Danish TSO Elkraft System contract Bro-
91.054 (FU 1103)

• Partners: NVE HVDC group, NEG Micon Control Systems and 
Aalborg University
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Basic comparison
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Basic comparison – generator U,I
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Basic comparison – steady state
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• Compares steady state before 
short circuit

• EMTDC sinusoidal variation 
(fundamental frequency) of 
powers and generator torque

• DC in currents cause the 
variation 
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Basic comparison - resonances
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Basic comparison - resonances
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• During short circuit L ≅ (LT2s+LT2p+Ltc + Lcc)  (LGs+LGr): f=302 Hz

• Short circuit cleared L ≅ (LT2s+LT2p+Ltc + Lcc+ LT1s+LT1p+ LTh) 
(LGs+LGr): f = 280 Hz
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Saturation – generator U, I

−0.05 0 0.05 0.1 0.15
−3

−2

−1

0

1

2

3

Time [s]

Li
ne

 v
ol

ta
ge

 [k
V

]

– sat U
12

– sat U
23

– sat U
31

+ sat U
12

+ sat U
23

+ sat U
31

−0.05 0 0.05 0.1 0.15
−10

−5

0

5

10

Time [s]

C
ur

re
nt

 [k
A

]

– sat I
1

– sat I
2

– sat I
3

+ sat I
1

+ sat I
2

+ sat I
3

12. November 2003 IEA Annex XXI: Transient events in large wind farm installations 9

Stator flux transients (EMT)
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• Generator voltages and currents
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Tripping of a wind turbine
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WT trip – generator power
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WT trip - generator voltage – and frequency
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WT trip - generator speed and LS shaft torque
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WT trip – 10 kV power
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Fast arc (opened at first zero crossing)
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Islanding of two wind turbines
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Islanding 2 wt (EMTDC simulations)
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Voltage change on wt1
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Voltage change on wt 1
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Low speed shaft torque
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• Simulated without 3p effect

• Trip happened at instant when turbulence 3p was high

• 2 % voltage change has marginal influence on shaft torque
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Conclusion

• Very good agreement between basic EMTDC and DIgSILENT 
simulations

• Stator flux transients important for instantaneous currents, but 
not influence on long – term stability (if relays not tripped!!)

• Saturation in generator not available in DIgSILENT, probably 
reason for ”over-simulated” voltage increase during islanding.

• Backlash should improve mechanical model (important 
because of torque zero-crossing)

• Dynamic inflow should improve aerodynamic model (important 
because of fast pitching)

• Validations (measurements) of short-circuit simulations 
missing
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ECN-TUD projects on models for power system studies:

1. Erao-2 project: model development

• Component models

• Current status

• Example: Near Shore Windfarm Egmond

• Next steps

• 1-5-2002 — 31-12-2003

2. Erao-3 project: model verification

• 1-1-2003 — 31-6-2006

2
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ERAO-2 project

• Objective:

– development of dynamic models of wind farms with:

* Double Fed Induction Generator (DFIG);

* Permanent Magnet Generator (PMG);

* Cluster Controlled Induction Generator (CCIG);

* Induction Generator IG (reference case);

– non-electrical part:

* Constant Speed Stall (CSS);

* Variable Speed Pitch (VSP).

• Tasks:

– compare normal operation and response to grid faults
in a case study:
Near Shore Wind farm (20 km from NL coast near Egmond)
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NSWP
ECN
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Component Models (1):

• Wind farm model includes:

– aerodynamic wake model of wind farm (pre-processor)

– full dynamic model of turbine, including:

* rotor effective wind (rotational sampling)

* pitch control (if present)

* speed control (if present)

* tower motion

* drive train dynamics

• two turbine types:

– Constant Speed Stall

– Variable Speed Pitch
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Component Models (2):

• Electrical models include:

– generators: IG, DFIG, PM;

– IGBT converters;

– converter control;

– transfomers;

– cables;

– a simple grid model: controlled synchronous machine

• all electrical components are modelled in Simulink;

• converters are modelled as controllable V-sources;

• all electrical components are modelled in dq0 reference frame.
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abc versus dq0 variables
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Full model (switching converter) versus voltage source model
Voltage dip on DFIG model
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Full model (switching converter) versus voltage source model
Voltage dip on DFIG model
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Near Shore WF - 1 string of 12 turbines - Option 1: CSS-AM

960 V 34 kV

150 kV
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Near Shore WF - 1 string of 12 turbines - Option 2: VSP-DFIG

960 V

690 V

34 kV

150 kV
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Near Shore WF - 1 string of 12 turbines - Option 3: VSP-PM

150 kV

34 kV
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Near Shore WF - 1 string of 12 turbines - Option 4: CSS-CC

34 kV

150 kV

ω1

ω2

ω3
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Grid model: controlled synchronous machine

150 kV14 kV

Exciter Voltage
controller

Frequency
controller

Purpose:

• compare performance of four WF options
with interaction from the grid
especially for frequency and voltage support
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Current status

Component models:

Generators DFIG completed
PMG completed
CCIG completed
IG completed

Grid components cable completed
transformer completed
controlled SM completed

Turbine CSS completed
VSP completed

Near Shore WF models (1 string, 12 turbines):

VSP + DFIG WF completed
VSP + PMG WF completed
VSP + CCIG WF completed (4 turbines)
CSS + IG WF completed

15
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Example of NSWF Simulink model - 1 string of 12 turbines:
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Near Shore WF model - VSP Turbine:

Run park_ini.m for parameters

2
Teset_SSE

1
Tm_SSE

wind

sturb_full_vsp

turbine excl. generator

tur3

tur2

tur1

swind_Vw0ext_vsp

rotor effective wind

pitch2

pitch1

sctrpvsp

pitch speed

gen con

sctrgvsp

e.m. torque

Variable speed wind turbine
with DFIG dq model

(c) 2003 Johan Morren (TUD),
Tim van Engelen &
Jan Pierik (ECN)
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Near Shore WF model - DFIG:
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Simulation example: NSWF - 1 string of 12 turbines: CSS-AM

• reference model, string of 12 constant speed stall turbines

(one third of the NSWF);

• WF connected to a grid modelled as a single 220 MW synchronous
generator;

• two constant loads: 75 MW total;

• response to a wind gust from 4 to 10 m/s;

• WF production from 0 to 16 MW;
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Simulation example: NSWF - 1 string of 12 turbines: CSS-AM
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Simulation example: NSWF - 1 string of 12 turbines: CSS-AM
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Simulation example: NSWF - 1 string of 12 turbines: CSS-AM
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Next steps Erao-2:

• compare WF dynamics during normal conditions and grid faults;

• improve WF control (especially for cluster controlled option);

• investigate grid frequency and grid voltage support.
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Grid condition cases to be investigated:

Condition CSS VSP-DFIG VSP-PM CC-CSS
Normal operation
Flicker X X X X
Frequency dip
49 Hz X X X X
51 Hz X X X X
Voltage dip
70-80% X X X X
60-70% X X X X
0-60% X X X X
3-phase short X X X X
Grid support
Frequency - X X X
Voltage - X X X
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Erao-3:

Objective:

• Verification of dynamic models of wind farms developed in Erao-2.
For verifiation the measurement database of IEA Annex XXI will be
used.

• Contribution of existing measurements to the IEA Annex database.

Tasks:

1. Inventory of available wind farm measurements in the Netherlands;

2. Model verification and where needed modification;

3. Documentation of results.
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US Wind Integration Stuies:  
Primary Technical Tools

Power Flow 
Determines voltages, element loading for specified generation and deman
Most basic power system engineering tool
A variety of tools are used, but PSS/E and PSLF most common

Dynamic Simulation
Used to show how large power system moves from state to state
Requires detailed models of dynamic elements
Suitable for simulations of very large power systems
PSS/E, PSLF are the standards for U.S. transmission entities

Electromagnetic Transients
Detailed studies of electrical, mechanical, and control interactions
Very detailed models of all power system elements
Detailed nature of modeling prevents application to large power systems
Examples:  EMTP, ATP, PSCAD

ERCOT Model Development Project - History

Discussions of need for better wind plant models in 
system studies at least as far back as August, 2001

Ongoing issues with forced curtailment
Recognition that curtailments have linkage to models

Project scope developed in early 2002
RFP issued April, 2002
Project awarded June, 2002
Project kick off August 1, 2002
Project completion September, 2003

Project Objectives

Develop models for four categories of commercial 
wind turbines appropriate for:

Steady state analysis (power flow)
Transient stability
Small signal stability
Stabilities studies including long and short-term dynamics

Validate models with available event data from field 
measurements
Document and deliver as “User Models” for PSS/E 

General Approach
1. Develop detailed models for individual wind turbines in 

PSCAD/EMTDC

2. Execute cases with detailed models and analyze results

3. Use simulation results to reduce the order of the turbine models for 
the types of events to be studied

4. Construct reduced-order models in PSS/E 

5. Compare PSS/E and PSCAD/EMTDC results; refine models if 
necessary

6. Validate PSS/E models against field measurements

Vestas V80 w/ VRCC
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Controller

R
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Controller

Pitch
Controller

mechanical
speed

generator
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generator power

rotor current command Generator

Drive train model
includes generator and
blade intertias, shaft
coupling

Three-phase wound-
rotor induction generator
model with external
reactive compensation

RCC modeled as diode
bridge matrix with IGBT

modulation of dc linkAll control blocks as per
Control Systems chapter

of turbine manual

Aerodynamic torque
generation modeled with
Cp(λ,β) algebraic equation;
tower shadowing or 3p
torque pulsations may also
be introduced in this block.

Protective functions not
shown on this diagram, but to
be included in PSCAD model



V80 VRCC Response to Fault

T i m e  ( s e c )

T o r q u e

 9 . 8   1 0 1 0 . 2 1 0 . 4 1 0 . 6 1 0 . 8

pu

  - 1

- 0 . 7 5

- 0 . 5

- 0 . 2 5

  + 0

+ 0 . 2 5

+ 0 . 5

+ 0 . 7 5

  + 1
T w T e C p

T e r m i n a l  V o l t a g e ,  S t a t o r  a n d  R o t o r  C u r r e n t  ( A  P h a s e )

 9 . 8   1 0 1 0 . 2 1 0 . 4 1 0 . 6 1 0 . 8

kV
 / 

kA

  - 5

- 3 . 7 5

- 2 . 5

- 1 . 2 5

  + 0

+ 1 . 2 5

+ 2 . 5

+ 3 . 7 5

  + 5
V a I a 1 I a r

R e a l  a n d  R e a c t i v e  P o w e r  G e n e r a t i o n

 9 . 8   1 0 1 0 . 2 1 0 . 4 1 0 . 6 1 0 . 8

M
W

 / 
M

VA
R

  - 2

- 1 . 6

- 1 . 2

- 0 . 8

- 0 . 4

  + 0

+ 0 . 4

+ 0 . 8

+ 1 . 2

+ 1 . 6

  + 2
P g e n Q g e n

D C  L in k  Q u a n t i t i e s

T i m e  ( s e c )

V R C C  D C  o lt a g e

 9 .8   1 0 1 0 .2 1 0 .4 1 0 .6 1 0 .8  - 1

- 0 .6

- 0 .2

+ 0 .2

+ 0 .6

  + 1
E d c

V R C C  D C  C u r re n t

 9 .8   1 0 1 0 .2 1 0 .4 1 0 .6 1 0 .8  - 1

- 0 .6

- 0 .2

+ 0 .2

+ 0 .6

  + 1
I d c

GE 1.5 MW Turbine – Block Diagram
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Prototype PSS/E Model Results

Validation of ERCOT Dynamic Models

Actual measurements are ultimate measure of model validity
Quantities of interest

Terminal characteristics – voltage current, P, Q
Mechanical – speed, pitch
Wind speed

Challenges
Both individual turbine and plant level measurements desirable for 
computer model validation
Not feasible to collect both here due to budget and logistical constraints
Individual turbine measurement data hard to come by, even from vendors

Electrical data from interconnect bus best compromise in terms of 
value and cost

Data Collection

Dranetz-BMI Signature System installed at each site
1 InfoNode and 2 DataNodes
Installed at interconnect substation

Data Types
1-sec resolution average voltage, current, power quantities
5-min resolution of Min/Max/Avg of every cycle for all steady-
state quantities
Event-triggered disturbance data including 10-second rms voltage 
and current for rms voltage variations (1/2 cycle values)

Collection period
Instruments installed at 3 sites in Dec 2003 and 4th site Mar 2004
Data collection through end of 2003 on current project and likely 
extension for 2004 (NREL) and 2005 (ERCOT)

Example High-Resolution Data
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Project Status

8 months of monitoring completed
Detailed PSCAD and reduced-order PSS/E single turbine 
models completed for all 4 turbine types
Analytical validation of PSS/E turbine models against detailed 
models completed for all 4 turbine types
ERCOT wind plant models completed with finalization of 
TWPP remaining
Plant model validation against measurements completed
Presentation

Ongoing Needs

Model application expertise
Continuing model validation
Keeping up with new wind energy technology 
developments
Addressing related issues

Short-circuit behavior
Advanced wind turbine technologies
Advanced wind plant designs

Looking ahead…

Enlisting others in the process
Other transmission providers, operators
Turbine vendors / customers
Industry working groups (e.g. IEEE PES)

Addressing other power system engineering needs related to 
wind energy

Short-circuit models
Operations models
Wind plant design
Turbine and wind plant requirements/standards

UWIG Role?
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William W. Price

GEGE Wind Energy Wind Energy Technology andTechnology and
Dynamic ModelingDynamic Modeling

GE Power Systems Energy Consulting

GE   W I N D   - 1.5 / 1,5s / 1.5sl Series
Main Data:

- Tower options:
GE Wind 1.5 67,4/80/85 m.
GE Wind 1.5s 67,4/80/85/100 m.
GE Wind 1.5sl 61,4/80/85/100 m.

- Rotor diameter options:
GE Wind 1.5 65,0 m.
GE Wind 1.5s 70,5 m.
GE Wind 1.5sl 77,0 m.

- Generator capacity: 1500 kW, 50/60 Hz

- Control: Pitch

- Rotor Speed: Variable 11-20 rpm

- Swept area: 3.318/3.902/
4.657 qm

GE Wind Technology

GE   W I N D   - 3.6 Offshore

Main Data:

- Generator capacity: 3600 kW

- Control: Pitch

- Rotor speed: 8,5 - 15,5 Rpm

- Swept area: 7.854 sq.m

- Rotor diameter: 104 m.

- Tower options: 100-140m

GE Wind Technology

Wind Turbine

frotor
Protor

fnet
Pstator

3φAC Windings

Collector 
System

(e.g. 
34.5kV 

bus)

Field Converter

P rotor
F rotor

P conv
F network

P net
Q net

Basic Components of a GE Wind Turbine Generator 

GE Wind Technology

Taiban Mesa 208 MW

Colorado Green 162 MW

Recent Large
Wind Farm
Installations
On Western
U.S. System

~ 2500 km

Interconnection Issues – Dynamic Performance
• Voltage Regulation

• Steady-state reactive power capability
• Dynamic voltage response
• Flicker

• Stability
• Maintaining Synchronism
• Damping

• Fault Tolerance/Low-Voltage Ride-Through
• Variable Power

Problems are different and challenging 
for geographically large and 

weak (low short-circuit ratio) systems
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Guadelupe
40+65MVAr

Reactors

230kV SPS
Equiv

Bl ackwater
200MW HVDC

Taiban
WindFarm

135x1.5MW

34.5kV

BA 345

Guadelupe 345
BW 345

BA 115

Fault # 2
(3-phase)

Fault # 1
(1-phase-g)

BA 345
Equiv

Low Voltage Ride-Through
- Requirements driven by system needs

~200 km

Low Voltage Ride-Through Factory Test

Voltage

Power

Unbalanced faults 
present equipment 
design and simulation 
challenge:
• Good dynamic 
performance for 
severely unbalanced 
fault
• High fidelity 
simulations

Collector Bus Utility
Transmission

Bus (POI)

Individual WTG

Crisp voltage regulation in weak systems is essential 

75 km

SCR ~3.5

~20 km

Basic Stability Models -
Overall StructureWind

Speed

Generator/
Converter

Model

Pgen , Qgen
Electrical
Control
Model

P current &
Flux

Commands

Over/under
Voltage

Trip Signal

Turbine &
Turbine Control

Model

Wind Gust
Model

(User-written)

Power
Order

Over/under Speed
Trip Signal

Vreg bus

Vterm

Pelec

Trip Signal

Supervisory
Control

Icomp

Qcmd

Essentially instantaneous response 
to control commands

Vterm

From excitation
control model

Eq"

IPcmd
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Q 
X"

P

*

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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Iterate with network
solution
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jX"

Eq"cmd

1
1+ 0.02s

1
1+ 0.02s

s0

s1
From excitation
control model

Generator & Field Converter Model
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Values are application dependent

Typical Generator/Converter Trip Levels

0.02+0.30

0.10+0.15

1.0+0.10

0.02-0.70

0.10-0.30

1.0-0.25

10.0-0.15

Ttrip (sec.)∆Vtrip (p.u.)

Low-voltage
Ride-through

Model is evolving with the technology

Excitation (Converter Control) Model
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Two-mass torsional model may be used

Wind Turbine and Turbine Control Model
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Close match with field measurements
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Summary: 
– Integration of wind generation into weak systems 

presents challenges
– A windfarm is an engineered system, and each 

application has particular characteristics which drive 
system requirements

– Successful design depends on systemic analysis 
beyond consideration of the performance of individual 
WTGs

Modeling must provide flexibility for evolving 
technology and application-specific designs

Modeling must provide flexibility for evolving 
technology and application-specific designs
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1SINTEF Energy Research

Wind farm models for power 
system analysis

John Olav Giæver Tande
SINTEF Energy Research
7465 Trondheim. Norway

Phone: +47 73 59 74 94; Fax: +47 73 59 72 50
john.o.tande@sintef.no

2SINTEF Energy Research

Fixed speed wind turbine/wind farm model

Scope of model:
user-model in power system simulation tools (PSSE, SIMPOW) 
Input:
time-series of wind speed, Cp(λ,β), turbine radius, turbine 
inertia, shaft stiffness, gearbox ratio, generator inertia and 
electrical characteristics, pitch control data, capacitor bank and 
number of WT in wind farm
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Wind speed variations (deterministic)
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Torque providing wind speed
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Torque providing wind speed
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Aerodynamic torque

Relation approximated by steady-state equation:

13 ),(5.0 −= tptt CAuT ωβλρ

),(5.0 3 βλρ pt CAuP =
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Mechanical Drive Train

Approximated by two-mass model
(in pu with ref to generator):
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Turbine and generator torque
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Measured vs simulated power
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Measured vs simulated power
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Wind farm model - aggregation
A wind farm with Nwt wind turbines is represented by 

one wind turbine model.
The aerodynamic torque is calculated assuming that 

the wind speed fluctuations at each of the wind 
turbines are uncorrelated.

13
,, 5.0 −= tpwftwtwft CAuNT ωρ  

5.0
, ))(()( −−+= wtavgtavgwft Nutuutu  
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Measured and simulated power
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DFIG wind turbine/wind farm model

Scope of model:
user-model in power system simulation tools (PSSE, SIMPOW) 
Input:
time-series of wind speed, Cp(λ,β), turbine radius, turbine 
inertia, shaft stiffness, gearbox ratio, generator inertia and 
electrical characteristics, pitch and speed control data, converter 
rating and number of WT in wind farm
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Generator speed (pu)

Torque set point (pu)

Kωg
2 (optimum 

aero efficiency)

DFIG control
Torque set point is controlled according to generator speed to obtain 
optimum aerodynamic efficiency below rated power
Pitch control is applied to maintain generator speed at rated power

1/1.3

1.30.7 1.0

16SINTEF Energy Research

Simulation CASE 1
Up and down ramping of the wind speed and with 
superimposed 1 Hz sinusoidal variation
The grid is stiff and the terminal voltage of the wind turbine 
is 1.0 in the q-axis and 0.0 in the d-axis
The reactive power exchange between the grid and the 
wind turbine is controlled to be zero
The speed is controlled to maximize the efficiency of the 
wind turbine below rated power, whereas the pitch angle 
is controlled to limit the speed at rated power
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Conclusion

Broad interest - important topic

Initial developments constitute a good start

Need for further development

IEA Annex XXI forms framework for coordinated effort
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Fixed speed wind turbine (WT500)
Nominal power, Pn (MW) 0.5
Nominal voltage, Un (kV) 0.69
Nominal apparent power, Sn (Mvar) 0.557
Nominal frequency, fn (Hz) 50
Number of pole pairs, p 2
Stator resistance, R1 (pu) 0.0098
Stator leakage reactance, X1S (pu) 0.1168
Rotor leakage reactance, X2S (pu) 0.1691
Magnetizing reactance, XM (pu) 3.9568
Magnetizing resistance, RM (pu) (in series with Xm) 0.0999
Rotor resistance, R2S (pu) 0.0096
Shunt-capacitor, Qc (Mvar) 0.125
Generator inertia, Hg (s) 0.33
Turbine inertia, Ht (s) 2.99
Shaft stiffness, k (pu torque/el. rad.) 0.61
Mutual damping, dm (pu torque/pu speed) 0.0017
Gearbox ratio, ng 55.814
Turbine radius (m) 20.5

 

21SINTEF Energy Research

Fixed speed wind turbine (WT500)
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Fixed speed wind turbine (WT500)
Measurement set-up

ε=2°

2a=1.7m

b=2.9m

h=36m

92.5m
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