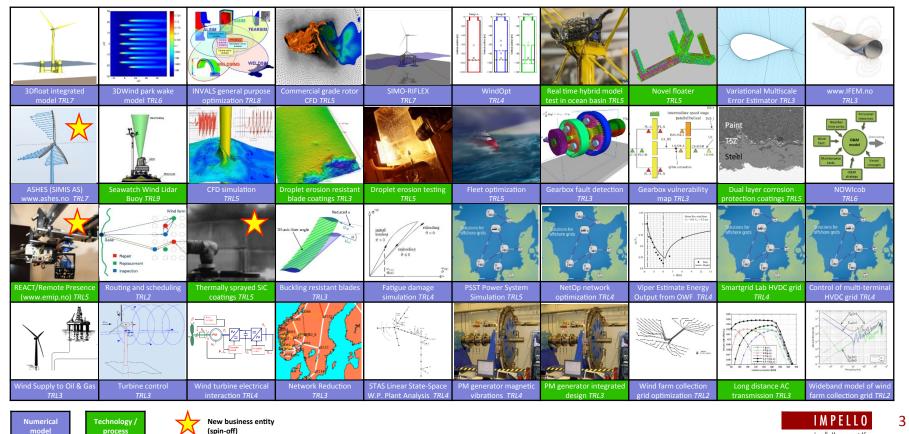
Potential and realized economic impacts of NOWITECH innovations

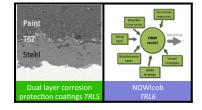
Impello Management AS Frode Iglebæk 23.08.2017

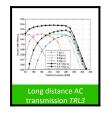


<u>Realized economic impact</u> from NOWITECH already exceeding the programme investment!

- Research investment: 35 MEUR (NOWITECH budget 2009-2017)
- Realized impact: 35+ MEUR (2 innovations + 3 companies)
- Potential impact: >5 billion EUR (7 innovations)

More than 40 innovations from NOWITECH 2009-2017


Impello Management AS


Review of 11 select innovations

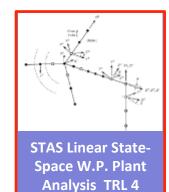
4



New business entity

Numerical models

Software


- Integrated coupled analysis of
 - Complete structure
 - Wind loads
 - Sea loads
- Improved load prediction
- Reduced cost and risk

2500 MEUR

Methodology

- Optimization of offshore grid layout
 - Wind farm clusters
 - HVDC interconnectors

Methodology

- Design of control algorithms for wind power plants
 - Optimize production
 - Reduce turbine fatigue

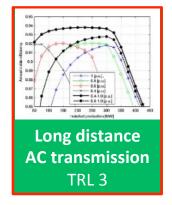
Personnel resources Weather time series Wind 0&M farm model Maintenance Vessel tasks concepts 0&M strategy NOWIcob TRL6

Software

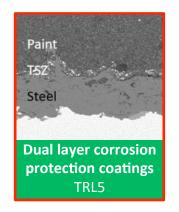
- Optimization of maintenance and logistics strategies
- Decision support tool

5

400 MEUR


1100 MEUR

Technology / process


Commercial product

- Met-ocean buoy with LiDAR
- Measuring wind speed at different altitudes.
- Fugro OCEANOR

Concept/method

- Control strategy
- Reduce electrical loss in long HVAC export cables
- Loss reduction: 1 %-point

Methodology

Optimize corrosion protection

- Low-cost coating / short maintenance intervals vs.
- Expensive dual layer coating / long maintenance intervals

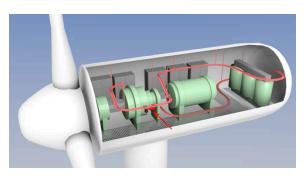
10 MEUR

200 MEUR

150 MEUR


Company spin-offs

Seram Coatings AS


- Thermasic an innovative method for thermal spraying of silicon carbide (SiC).
- Generic technology
- Large range of future application areas
- High commercial potential
- Based on PhD work in Nowitech.
- www.seramcoatings.com

SIMIS AS

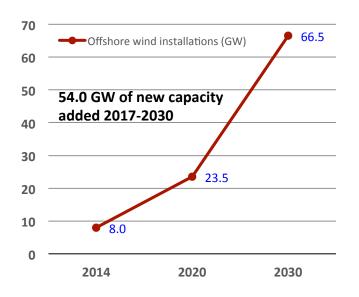
- Ashes wind turbine simulation software.
- Integrated simulation of e.g. wind loads, sea waves, gravity, buoyancy, and generator loads.
- Based on post.doc work in Nowitech
- www.simis.io

EMIP AS

- REACT technology for remote inspection and maintenance of offshore turbines.
- IP owned by Norsk Automatisering.
- Funded by several RCN/EU projects.
- Based on PhD work in Nowitech.
- www.emip.no

20 MNOK investment in 2016

Thermal spraying of silicon carbide (SiC).


Erik Langaker (fra venstre), Knut Brundtland, Gisle Østereng, Sverre Skogen, Nuria Espailargas, Rune I. Fløgstad, Elvind Reiten, Erik Wold og Svein Aaser. Foto: Aleksander Nordahl

Ståltro på knallhard oppfinnelse

Syv av Norges fremste næringslivstopper satser 20 millioner kroner på en ny oppfinnelse som gjør at et verdens hardeste stoffer nå kan sprøytes rett på alt fra biler til raketter.

Methodology (1): Market projections based on WindEurope's Central Scenario

Accumulated capacity

Derived assumptions from the Central Scenario

	2014	2015	2016	2020	2025	2030
New installations (GW)		3.0	1.5	2.8	4.3	4.3
Accumulated installations (GW)	8.0	11.0	12.5	23.5	45.0	66.5
No. of new windfarms/yr		8.6	3.0	5.5	8.6	8.6
Accumulated no. of windfarms			81	103	146	189
Av. size of windfarm (GW)	0.38	0.35	0.50	0.50	0.50	0.50
Red figures = Central scenario Black figures = Linear inter/extrapolation	<u>~</u>			rts	0.3	5 GW

Sources:

• WindEurope (2017): The European offshore wind industry. Key trends and statistics 2016

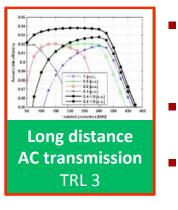
• EWEA (2015): Wind energy scenarios for 2030

Methodology (2): Potential impact

Estimate cost saving (or profit)

- Per installed GW or produced GWh
- ...multiplied with theoretical <u>market size</u>
 - installed GW, produced GWh
 - no. of parks, turbines, foundations, etc.
- ...adjusted for <u>relevance/applicability</u>,
 - e.g. type of park, type of foundation, water depth, distance to shore, etc.

Estimate annual cashflow for each innovation:


- + Annual net cost savings (profit) per GW
- Required additional investments per GW
- = Net cashflow per year

Calculate net present value (NPV):

- Net cashflow discounted over 10 or 25 years
- 5 % discount rate (cost of capital)

Long distance AC transmission

- Control strategy for minimizing electrical losses in long HVAC export cables
- Continuous adjustment of cable operating voltage
- **Loss reduction**: 1 %-point of produced electricity.

Quantified potential:

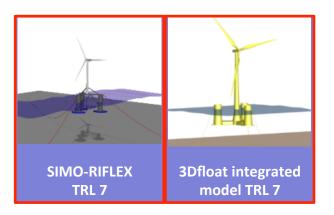
NPV ≈ 200 MEUR

ASSUMPTIONS

Additional required investment per GW	10.0	MEUR
Annual savings/yr per GW installed	2.0	MEUR
Electricity price	50	EUR/MWh
Discount rate (cost of capital)	5.0	%
Inflation rate	2.0	%
Market relevance (applicable new installations)	20	%
Loss reduction (GWh) per 1.2 GW farm	48.4	GWh
Loss reduction (percent points)	1.0	%
Annual electricity production per 1.2 GW farm	4836	GWh
Full load hours	4030	hrs
Capacity factor	46	%
Operation period	25	yrs
Investment period	10	yrs
Wind farm size	1.2	GW

Long distance AC transmission – NPV estimate

CASHFLOW AND NPV [MEUR]	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2054	NPV MEUR
Investment (3 years prior to operation)	5.5	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	-	-	-	-	
Annual saving (nominal values)	-	-	-	1.1	2.8	4.6	6.3	8.0	9.8	11.5	13.2	15.0	16.7	18.4	1.7	
Net profit/yr (nominal values)	-5.5	-8.6	-8.6	-7.5	-5.8	-4.0	-2.3	-0.6	1.2	2.9	4.6	15.0	16.7	18.4	1.7	113
Net profit/yr (real values)	-5.5	-8.8	-8.9	-8.0	-6.2	-4.4	-2.6	-0.6	1.4	3.5	5.7	18.6	21.2	23.8	3.6	184
Total new installations (GW) - Central sc	enario			2.8	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	~ 20	0 MEUR
Applicable new installations (GW)	20 %			0.6	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	~ 20	
Accumulated new applicable installations							0.6	1.4	2.3	3.1	4.0	4.9	5.7	6.6		


Investment 2017: 10 MEUR/GW * 2.8 GW * 20 % = 5.5 MEUR Annual saving 2020: 2 MEUR/GW * 2.8 GW * 20 % = 1.1 MEUR

REFERENCES

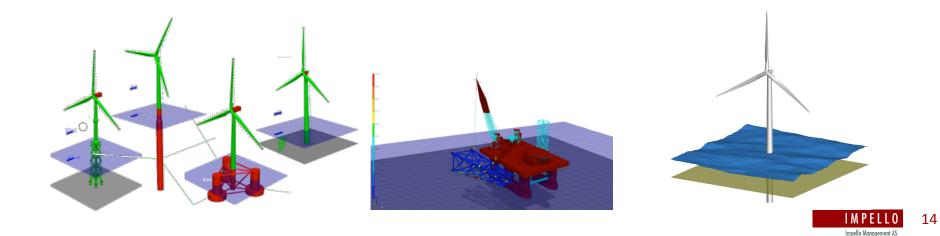
- Gustavsen, Bjørn and Olve Mo (2016) Variable Transmission Voltage for Loss Minimization in Long Offshore Wind Farm AC Export Cables, DOI 10.1109/TPWRD.2016.2581879, IEEE Transactions on Power Delivery
- **O. Mo, B. Gustavsen**, EERA Deepwind 2016 presentation, Feb 2016, <u>http://www.sintef.no/globalassets/project/eera-deepwind2016/presentations/b2_olve-mo.pdf</u>

SIMO-RIFLEX and 3Dfloat

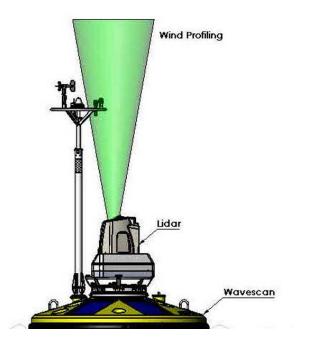
- Software simulation tools coupled analysis
- Cost reduction: Reduced materials use
- Relevant for both floaters and bottom fixed

Quantified potential:

NPV ≈ 2500 MEUR


ASSUMPTIONS

Wind farm size	1,0	GW
Project duration (technology obsolete after this)	10	yrs
Market relevance (applicable new installations)	100	%
Materials weight - floater	3 670	tons
Materials weight - monopile	1 370	tons
Reduced materials use (tower, substructure, mooring)	5	%
Unit costs (materials)	5.0	EUR/kg
Materials savings per turbine - floater	918	kEUR
Materials savings per turbine - monopile	343	kEUR
Turbine size	6.0	MW
No. of turbines per wind park (1 GW)	167	turbines
Materials savings per 1 GW - floater park	153	MEUR
Materials savings per 1 GW - monopile park	57	MEUR
Floater park share	15	%
Monopile park share	85	%
Total additional investments per 1 GW park	1.0	MEUR
Discount rate (cost of capital)	5	%



SIMA (SIMO/RIFLEX) and 3Dfloat – NPV estimate

CASHFLOW AND NPV [MEUR]	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	NPV MEUR
Investments - 3 years prior to operation	2,8	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	-	-	-	
Annual saving - floater parks (nominal values)	-	-	-	63.1	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.6	
Annual saving - monopile parks (nom. values)	-	-	-	133.4	208.6	208.6	208.6	208.6	208.6	208.6	208.6	208.6	208.6	208.6	
Net profit/yr (nominal values)	-2.8	-4.3	-4.3	192.2	303.0	303.0	303.0	303.0	303.0	303.0	303.0	307.3	307.3	307.3	2 183
Net profit (real values)	-2.8	-4.4	-4.5	204.0	327.9	334.5	341.2	348.0	355.0	362.1	369.3	382.1	389.7	397.5	2 551
Total new installations (GW) – Central scen.				2.8	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	≈ 2500 ME
Applicable new installations (GW) (100 %)				2.8	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	~ 2500 WIL
Accumulated new applicable installations				2.8	7.1	11.4	15.7	20.0	24.3	28.6	32.9	37.2	41.5	45.8	

Fugro OCEANOR – Seawatch wind lidar buoy

Floating met-ocean buoy

- Reduced cost of collecting data
 - Wind speed at different altitudes
 - Waves, current
- NOWITECH contributed to the start-up of the development.

Commercial product

80-100 MNOK (≈ 10 MEUR) of totals sales since 2012

Dudgeon (Statoil/Statkraft)

The Dudgeon wind farm is expected to produce 1.7 terawatt-hours (TWh) of electricity per year.

Realized impact > 25 MEUR

Selection of monopile rather than jacket foundation

- ...for relatively deep water and large turbines
- Importance of non-linear hydrodynamics viewed against the structural responses in an integrated design tool

Realized impact

- Risk and cost reduction through reducing uncertainty
- Improved modeling of both fatigue and extreme loads
- Consensus estimate by SINTEF, Statoil and Statkraft

Summing up: > 5 billion EUR economic impact from NOWITECH

SIMIS AS

Total (MEUR)

EMIP AS (Remote Inspection)

- Research investment: 35 MEUR
- **Realized impact**: 35+ MEUR
- Exceeds the programme investment!
- Potential impact: >5 billion EUR
 - Quantified potential for 7 innovations
 - Potential of the other innovations not estimated

Disclaimer: Using other assumptions will give other NPV figures and thus a higher/lower total potential economic impact of NOWITECH.

Initial NOWITECH project investment	MEUR				
320 MNOK (2009-2017)	35				
Realized impact	MEUR				
Dudgeon foundations (Statoil/Statkraft)	25				
Seawatch buoy (Fugro OCEANOR)	10				
Seram Coatings AS	New company				

Potential impact	NPV
Long Distance AC Transmission	200
NOWIcob	400
Remote Inspection	250
STAS	1100
Dual Layer Corrosion Protection Coating	150
SIMA (SIMO/RIFLEX) and 3Dfloat	2,500
NetOp/PowerGIM	400
Total (MEUR)	5,000

New company

New company

35

I M P E L L O

(lat.); stimulere, drive fremover, utvikle.