The **EXPLOIT** Project

"Exploitation of nutrients from salmon aquaculture"

Funded by The Research Council of Norway (216201/E40)

NTNU – Trondheim Norwegian University of Science and Technology

Western Norway, Coastal Area Flåtegrunnen outside Florø 6000 tons salmon production (18-20 months) 75-200 m depth

ENVIRONMENT – CULTIVATION - MODELLING

1200 m (ref west)

• 1200 m (ref east)

100 m 200 m (Farm)

Fish biomass, feed use and measured ammonia

EXPLOIT

Modelled ammonium-N dispersal

February

September

EXPLOIT

EXPLOIT

Growth of sugar kelp (Feb-Oct)

Average growth of sugar kelp (Feb-Jun)

EXPL

Seasonal C/N ratio

C/N ratio

EXPL

 Seasonal C/N ratio in kelp at five meters depth showing pronounced seasonal differences (mean, n=5).

Fossberg J. et al. Growth and composition of the kelp Saccharina latissima cultivated in salmon-driven IMTA (in prep)

Førde H. et al. Development of bryozoan fouling on cultivated kelp (Saccharina latissima) in Norway (in prep)

EXPLOIT

Stable isotopes analysis

- Different ¹⁵N signatures in kelp at different stations -> from different N sources
- The ¹⁵N signature in kelp close to the salmon farm is similar to the ¹⁵N signature in salmon feces (April og June).
- Higher growth rates during spring can be due to extra N from the salmon farm in April – June.

Conclusions

- Fast growth of seaweed in IMTA, but:
 - <u>There is a seasonal mismatch</u> between seaweed growth and peak Ndischarge from the fish farms
 - There are <u>scaling issues</u> considering industrial production in IMTA:
 - Stable isotope analysis suggests N-assimilation up to 200 m away in coastal environments
 - How much seaweed growth can this support? If, at a 10 cage salmon farm this can supply e.g. 30 ha with seaweed, this would yield up to 5.000 tons seaweed production pr year – (This must be further investigated and elaborated)
- Does the N-source matter? No, not really
 - Large seaweed monocultures may indirectly balance the N-input from salmon farming at both regional and annual scale

EXPL

Improved sustainability of salmon farming through economies of scale in **exposed** areas challenges the IMTA concept

<u>1985</u>	\rightarrow	2010
In-fjord	\rightarrow	off-coast
40 m	\rightarrow	157 m (C)
4 m	\rightarrow	30 m (d)
550 m ³	\rightarrow	60.000 m³(V
180 t	\rightarrow	1.200 t (BM)
6	\rightarrow	2 persons

Source: Aqualine

Technology for a better society

Improved sustainability of salmon farming through new **closed** systems with possible combined mechanical and biological waste treatment encourages the IMTA concept

- **Bottom grazers** in closed systems (also valid for open systems?)
- Collection of sludge:
 - ✓ Feed for polychaetes as new feed resource?

Next step: Low-Trophic Aquaculture Index for Norwegian Coastal Waters

- How much does the N-input from salmon farming contribute to the total supply?
- How does the contribution vary with season?

Broch OJ. et al. Coastal scale dynamics and effects of dissolved nutrients from Norwegian aquaculture. (in prep)

Thanks for your attention!

SINTEF Fiskeri og havbruk AS