CO, Dynamics

Fundamental aspects of transport and injection of CO_2 with impurities

Effect of sub-models

Depressurization of CO, - a numerical benchmark study

Motivation

- Important in CO_2 transport:
 - Safe procedures for injection into reservoirs, first fill and depressurization of pipelines
 - Pipeline integrity analysis
- A depressurization of a CO $_2$ pipeline will normally lead to phase transition
- There is a need for numerical methods that are able to capture pressure waves in a robust and efficient manner.
- Benchmark of numerical methods: Need to consider the same model.
- OLGA: Industry standard. Here: Version 5.3.2.
- MUSTA method: Robust and relatively accurate. Independent of equation of state (EOS).

Effect of second-order scheme

Comparison between OLGA and MUSTA

Models

ID single-phase compressible flow:

Total energy: $E = \rho(e+1/2u^2)$ Wall friction: $F_w = \frac{f(\text{Re},\varepsilon)}{d} \frac{1}{2}\rho u^2$,

Where f is the Colebrook-White friction factor

Stiffened-gas equation of state $p(\rho, e) = (\gamma - 1)\rho e - \gamma p_{\infty}$

and $T(\rho, e) = \frac{1}{c} \left(e - \frac{p_{\infty}}{\rho} \right),$

Numerical simulations

- Pipe of length 1000 m and inner diameter 0.3 m. Closed at left-hand side
- Initially motionless CO_2 at $\rho = 20$ MPa and T = 300 K.
- At *t* = 0, the pressure at the right-hand side is reduced to 10 MPa and then set back to 20 MPa at *t* = 1 s.
- CFL = 0.9 for both OLGA and MUSTA
- A rarefaction wave followed by a shock wave propagate to the left.
- Results shown at t = 1.51 s.

Acknowledgement:

This work was financed through the CO₂ Dynamics project. The authors acknowledge the support from the Research Council of Norway (189978), Gassco AS, Statoil Petroleum AS and Vattenfall AB.

The Research Council of Norway

Parameters

- Equation-of-state parameters
- Dynamic viscosity: $\mu = 8.4 \times 10-5$ Pa s
- Relative pipe roughness: $\epsilon = 1.67 \times 10-4$

Effect of sub-models

- MUSCL-MUSTA
- CFL=0.5, 5000 cells
- Viscous term has nothing to say
- Wall friction gives pressure drop, but does not smear waves

Effect of second-order scheme

- MUSTA vs. MUSCL-MUSTA
- 100 cells
- Ref: MUSTA, 10000 cells
- Second-order scheme enhances resolution

Comparison between OLGA and MUSTA

- The methods appear to converge for fine grids, above 10000 cells
- The wave speeds agree with each other and the reference speed of sound (530 m/s) MUSTA gives a sharper wave resolution on coarse grids

	Quantity	Symbol (unit)	
-	Specific-heat ratio	γ(-)	1.4
	Spec. heat at const. pres.	$c_p \left(J/(kg K) \right)$	2400
	Reference pressure	p_{∞} (Pa)	1.5×10^{8}

Authors:

Sigmund Clausen, Gassco AS and Polytec Svend Tollak Munkejord, SINTEF Energy Research Contact: sigmund.clausen@gassco.no

Conclusions

- Due to the thermophysical properties, pipeline transport of CO₂ poses new challenges compared to transport of natural gas.
- An accurate and efficient numerical method is one important building-block of a CO_2 pipeline simulation tool
- In this work, numerical results from the commercially available OLGA code have been compared to calculations using the multi-stage (MUSTA) centred scheme
- The two numerical methods appear to converge on fine grids, but on coarse grids, the method in OLGA produced more smeared-out results
- A smearing-out of pressure waves might lead to an underestimation of the water-hammer effect and pipe cooling during depressurization
- Future work will include a benchmark case accounting for phase transfer