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Summary

We study a two-phase pipe flow model with relaxation terms in the energy equa-
tions, driving the model towards thermal equilibrium. This equilibrium state is
characterized by the temperatures being equal in each phase.

We then derive a linearized approximate Riemann solver satisfying the Roe con-
ditions for the thermally relaxed model, i.e. the model with equal temperatures
but unequal velocities in each phase. Using standard high-resolution techniques ap-
proximating second-order accuracy for smooth solutions, we compare this model to
a fully non-relaxed model through numerical experiments. Our simulations indi-
cate that thermal relaxation in the two-fluid model has negligible impact on mass
transport dynamics. However, the velocity difference of sonic propagation in the
thermally relaxed and unrelaxed two-fluid model may significantly affect practical
simulations.

iii





Preface

The present work constitutes the Master’s Thesis for the double degree of engineer at
ENSMA (Ecole Nationale Supérieure de Mécanique et d’Aérotechnique) and ETSIA
(Escuela Técnica Superior de Ingenieros Aeronáuticos) Universities.

This Thesis has been realised in SINTEF Energy Research, located in Trondheim,
Norway. The financial support received from SINTEF, as well as the grant received
from the French government are gratefully acknowledged.

I would like to give my sincere gratitude to my supervisors, Svend Tollak Munke-
jord and Tore Flåtten, for their helpful guidances and valuable discussions which
aided me along the work.

Finally, I would like to thank all my colleagues at office, and all the people I have
had the opportunity to meet with in Norway, for the enjoyable time I spent with
them and for making of my stay in Norway a beautiful and unrepeatable experience.

Pedro José Martínez Ferrer.
Trondheim, October 2010.

v





Contents

Summary iii

Preface v

List of Figures ix

List of Tables xi

Nomenclature xiii

1 Introduction 1

2 Numerical methods for fluid dynamics 3
2.1 Quasilinear form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Riemann problem . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Finite volume method . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 The Lax-Friedrichs scheme . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 The Riemann solver of Roe . . . . . . . . . . . . . . . . . . . . . . . 5

2.5.1 Linearization strategies . . . . . . . . . . . . . . . . . . . . . 6
2.5.2 High-resolution terms . . . . . . . . . . . . . . . . . . . . . . 7
2.5.3 Harten’s entropy fix . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 The Rough scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Numerical formally path-consistent schemes . . . . . . . . . . . . . . 9

3 Thermodynamic considerations 11
3.1 Isothermal gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Isentropic gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Ideal gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Stiffened gas equation of state . . . . . . . . . . . . . . . . . . . . . . 12

4 Numerical resolution of the Euler equations 13
4.1 The conservation-law form of the Euler equations . . . . . . . . . . . 13
4.2 Quasilinear form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Closure considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4.1 Isothermal gas . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.2 Isentropic gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.3 Ideal gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



viii Contents

5 Numerical resolution of a five-equation model 21
5.1 The two-phase five-equation flow model . . . . . . . . . . . . . . . . 21
5.2 Canonical nonconservative form . . . . . . . . . . . . . . . . . . . . . 23
5.3 Thermodynamic considerations . . . . . . . . . . . . . . . . . . . . . 24

5.3.1 Numerical algorithm for the pressure . . . . . . . . . . . . . . 24
5.4 Approximate eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Jacobian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.5.1 Simplified notation . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5.2 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5.3 Thermodynamic considerations . . . . . . . . . . . . . . . . . 27
5.5.4 Closure considerations . . . . . . . . . . . . . . . . . . . . . . 28
5.5.5 Analytical expressions . . . . . . . . . . . . . . . . . . . . . . 30

5.6 Roe matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6.1 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6.2 Thermodynamic considerations . . . . . . . . . . . . . . . . . 32
5.6.3 Closure considerations . . . . . . . . . . . . . . . . . . . . . . 33
5.6.4 Analytical expressions . . . . . . . . . . . . . . . . . . . . . . 34

5.7 Considerations about the Jacobian and Roe matrices . . . . . . . . . 35
5.8 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.8.1 Moving discontinuity . . . . . . . . . . . . . . . . . . . . . . . 36
5.8.2 Toumi’s shock tube . . . . . . . . . . . . . . . . . . . . . . . . 37
5.8.3 Water faucet . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion 49



List of Figures

2.1 The finite volume mesh with a control volume around each node. . . 4

4.1 Isothermal gas. Riemann problem with a discontinuity in the den-
sity at x = 0.5. Convergence of the density profiles using the Lax-
Friedrichs scheme (a) and the Roe scheme (b). The CFL number was
0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Isothermal gas. Riemann problem with a discontinuity in the density
at x = 0.5 solved using the Roe scheme on a grid of 500 cells. Results
for the velocity profile (a) and for the pressure profile (b) for three
different times. The CFL number was 0.5. . . . . . . . . . . . . . . . 16

4.3 Isentropic gas. Riemann problem with a discontinuity at x = 0.5.
Convergence of the density profiles using the Lax-Friedrichs scheme
(a) and the Roe scheme (b). The CFL number was 0.5. . . . . . . . 17

4.4 Isentropic gas. Riemann problem with a discontinuity at x = 0.5
solved using the Roe scheme on a grid of 500 cells. Results for the
velocity profile (a) and for the pressure profile (b) for three different
times. The CFL number was 0.5. . . . . . . . . . . . . . . . . . . . . 17

4.5 Ideal gas. Riemann problem with a discontinuity at x = 0.3. Density
(a), velocity (b), pressure (c) and internal energy (d) profiles solved
using the Roe method with and without the Harten’s entropy fix. The
CFL number was 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.6 Ideal gas. Riemann problem with a discontinuity at x = 0.3. Density
(a) and pressure (b) profiles solved using the Lax-Friedrichs and Roe
schemes. The CFL number was 0.9. . . . . . . . . . . . . . . . . . . 20

5.1 The moving discontinuity problem. . . . . . . . . . . . . . . . . . . . 36
5.2 Moving discontinuity. Convergence of the Lax-Friedrichs scheme. Re-

sults for the gas volume fraction profile (a) and for the pressure profile
(b) at t = 0.03 s using a CFL number 0.5 and ε = 10−12. . . . . . . . 38

5.3 Moving discontinuity. Results using the Lax-Friedrichs, Roe first or-
der and Roe with the MC limiter schemes for the gas volume fraction
profile (a) and for the pressure profile (b) using a CFL number 0.5
and ε = 10−1 at t = 0.03 s . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Toumi’s shock tube problem. . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Toumi’s shock tube. Harten’s entropy fix applied to the Roe scheme.

Results for the temperature at t = 0.06 s using a CFL number 0.5.
δ = 100 fixes the discontinuity in the middle of the tube. . . . . . . . 39

ix



x List of Figures

5.6 Toumi’s shock tube. Convergence of the Roe scheme. Results at
t = 0.06 s using a CFL number 0.5. . . . . . . . . . . . . . . . . . . . 40

5.7 Toumi’s shock tube. Results for the LxF, Roe first order and Roe
with the MC limiter schemes at t = 0.06 s using a CFL number 0.5. . 41

5.8 Toumi’s shock tube. Comparison between the four-, five- and six-
equation models. Results at t = 0.6 s using a CFL number 0.5. . . . 43

5.9 The water-faucet-problem. . . . . . . . . . . . . . . . . . . . . . . . . 44
5.10 Convergence of the water-faucet problem using the Lax-Friedrichs

scheme. The CFL number was 0.9. Results at t = 0.6 s using a CFL
number 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.11 Comparison on the solutions provided by different schemes for the
water-faucet problem. Results at t = 0.6 s. The CFL number was 0.9
except when the MC limiter was used, which was changed to 0.5. . . 46

5.12 Comparison on the solutions provided by the four-, five- and six-
equation models for the water-faucet problem. Results at t = 0.6 s
using a CFL number 0.5. . . . . . . . . . . . . . . . . . . . . . . . . 48



List of Tables

5.1 Initial state for the moving-discontinuity problem. Different values of
ε were set depending on the numerical scheme used. . . . . . . . . . 36

5.2 EOS parameters employed in the simulations. . . . . . . . . . . . . . 37
5.3 Initial state for the Toumi’s shock tube problem. . . . . . . . . . . . 37
5.4 Toumi’s shock tube problem. Convergence order, sn, and norm of the

error in the gas volume fraction by grid refinement. . . . . . . . . . . 42
5.5 Initial state for the water-faucet test problem. . . . . . . . . . . . . . 44
5.6 Water-faucet problem. Convergence order, sn, and norm of the error

in the gas volume fraction by grid refinement. . . . . . . . . . . . . . 47

xi





Nomenclature

Abbrevations

CFL Courant-Friedrichs-Lewy

EOS Equation of state

LxF Lax-Friedrichs scheme

MC Monotonized central difference

MUSCL Monotone upwind-centred scheme for conservation laws (higher-order ex-
tension of MUSTA scheme)

MUSTA Multi-stage scheme

Greek letters

α Volume fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

β Wave strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

χ Parameter vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

δ Parameter in the smoothed absolute-value function . . . . . . . . . . . . . -

γ Ratio of specific heats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

λ Eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s

Λ Diagonal matrix containing eigenvalues . . . . . . . . . . . . . . . . . m/s

φδ Smoothed absolute-value function . . . . . . . . . . . . . . . . . . . . . . -

ρ Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

σ Parameter related to the pressure jump at the gas-liquid interface . . . . -

Latin letters

A Jacobian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
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Chapter 1

Introduction

The SINTEF Group is the largest independent research organisation in Scandinavia.
SINTEF has approximately 2000 employees and its head office is in Trondheim. The
SINTEF Group is organized in several research divisions, which have been defined
in terms of value chains and industrial market clusters.

The SINTEF Energy Research is focused on finding solutions related to power
production and conversion, transmission and distribution covering all the key ar-
eas from the indoor climate and energy used in buildings such as gas technology,
combustion, bioenergy, refrigeration engineering and technology for the food and
nutrition industry.

Two-phase flows, and in general multiphase flows, are important in a large range
of industrial applications, such as in the oil and gas industry, in the chemical and
process industry as well as in the safety analysis of nuclear power plants.

In Norway, the oil and gas industry is of particular importance. Oil and gas
fields are often situated far from the shore, and at great depths. This increases
the drive towards field developments based on sub-sea processing and multiphase
flow transportation. Therefore, it is of significance to be able to predict the flows
in greater detail. For this purpose, good and rigorous mathematical models and
accurate numerical methods to solve them are required.

The aim of this work is the study of two-phase flows using numerical analysis. In
particular, this work presents a five-equation model which will be applied to these
particular flows. The results obtained from this model will be used to compare to
previous studies based on models with four and six equations [11]. In this context,
this thesis can be viewed as a new contribution to these studies carried out by
SINTEF.

The Master’s Thesis is organized as follows:
Chapter 2 presents the numerical methods we consider in this work. It intro-

duces the finite folume method followed by different numerical schemes to determine
the intercell flux function. The notion of formally path-consistent schemes is also
covered, leading the study of complex nonconservative system of equations.

In Chapter 3, different models of equations of state are introduced.
Chapter 4 is dedicated to the numerical resolution of the Euler equations for a

single phase flow. In particular, it shows numerical results for three different types
of equations of state. Some of them can be directly compared to previous works [12].

The modelling of a five-equation system to describe two-phase flows is carried

1



2 1. Introduction

out in Chapter 5. Particularly, the application of the Roe method is explained in
detail. Furthermore, comparisons between different numerical schemes as well as
between the four-, five- and six-equation models are presented.

Finally, Chapter 6 summarizes all the results obtained in the previous chapters.



Chapter 2

Numerical methods for fluid
dynamics

Numerical methods replace the continuous problem represented by the PDEs by a
finite set of discrete values by discretising the domain of the PDEs into a finite set
of points or volumes via a mesh or grid.

Different programs can be used in order to solve fluid problems numerically. All
the calculations presented in this work utilised Fortran 90.

2.1 Quasilinear form
Consider first a system of PDEs of the form

Ut + F (U)x = 0. (2.1)

also called a system of conservation laws.
Then, the expression

Ut +AUx = 0, (2.2)

with
A = ∂F

∂U
(2.3)

is called the quasi-linear form of (2.1). U is the column-vector of conserved variables
and A is called the Jacobian matrix of the flux function F (U). When considering a
hyperbolic system of PDEs, the eigenvalues of A represent physically the speeds of
propagation of information.

2.2 The Riemann problem
To solve any system of equations presented in the form (2.1) or (2.2) it is necessary
to define the Initial Value Problem (IVP) for the conservation laws. The Riemann
problem consists on the system (2.1) combined with the initial conditions (IC)

U (x, 0) =
{
UL x < x0,

UR x ≥ x0.
(2.4)

3



4 2. Numerical methods for fluid dynamics

2.3 Finite volume method
According to Toro [12], computing solutions containing discontinuities, such as shock
waves, can present problems depending on the formulation and numerical schemes
used. Toro highlights in his book the fact that formulations based on variables other
than the conserved variables, fail at shock waves. Therefore, it is recommended to
work with conservative methods if shock waves are part of the solution.

The finite volume method regards the discrete values of the domain of (2.1) as
averages over finite volumes. This method keeps the conservative form of a system
of equations. For one spatial dimension, each cell corresponds to a control volume
placed around each node of the mesh, as shown in Figure 2.1.

s s s s sc c c c c cUi−1 Ui Ui+1

Fi−1/2 Fi+1/2

Figure 2.1: The finite volume mesh with a control volume around each node.

Denote de ith grid cell by

Ci =
(
xi−1/2, xi+1/2

)
, (2.5)

then the value Uni will approximate the average value over the ith interval at time
tn

Uni ≈
1

∆x

∫ xi+1/2

xi−1/2

U (x, tn) dx ≡ 1
∆x

∫
Ci

U (x, tn) dx, (2.6)

where ∆x = xi+1/2 − xi−1/2 is the length of the cell.
The basic integral form of a conservation law can be written as

d
dt

∫ x2

x1
U (x, t) dx = F1 (t)− F2 (t) (2.7)

where +F1 (t) and −F2 (t) represent fluxes into the section (intercell fluxes). Us-
ing this expression, one can approximate Un+1

i , the cell average at time tn+1, by
integrating (2.7) in time from tn to tn+1

1
∆x

∫
Ci

U (x, tn+1) dx = 1
∆x

∫
Ci

U (x, tn) dx

− 1
∆x

[∫ tn+1

tn
F
(
U(xi+1/2, t)

)
dt

−
∫ tn+1

tn
F
(
U(xi−1/2, t)

)
dt
]
.

(2.8)

This suggests that one should study numerical methods of the form

Un+1
i = Uni −

∆t
∆x

(
Fni+1/2 − F

n
i−1/2

)
, (2.9)

where Fni−1/2 is some approximation to the average flux along x = xi−1/2. This
expression can be made accurate to arbitrary order: F can be a function of higher
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orders in ∆t and ∆x. Moreover, Runge-Kutta methods can be employed to obtain
higher order in time.

The challenge in the finite volume methods is to find an accurate and computa-
tionally inexpensive approximation to the intercell flux.

2.4 The Lax-Friedrichs scheme
It is one of the most simple and robust schemes for the intercell flux. This flux is
given by

Fni−1/2 = 1
2
(
Fni−1 + Fni

)
− 1

2
∆x
∆t

(
Uni − Uni−1

)
. (2.10)

This method is stable for a hyperbolic system if ∆x/∆t ≥ |λm|, where |λm| is
the largest eigenvalue of the Jacobian matrix (2.3). This is called the CFL condition
and the number |λm| ·∆t/∆x is called the CFL number.

2.5 The Riemann solver of Roe
The Roe method approximates a non-linear system of equations written in the form
(2.1) combined with the Riemann problem (2.4) by replacing the Jacobian matrix
with a constant matrix locally linearised. Following the nomenclature utilised by
LeVeque [6] and Munkejord [8], this can be written as

Âi−1/2 = Âi−1/2 (Ui−1, Ui) , (2.11)

where Âi−1/2 is a function of the neighbourhood data Ui−1, Ui.
Therefore, the original Riemann problem (2.4) is replaced by a linear approximate

Riemann problem defined locally at each cell interface
Ut + Âi−1/2Ux = 0,

U (x, 0) =
{
UL x < x0,

UR x ≥ x0.

(2.12)

The matrix Âi−1/2 is called the Roe matrix and has the following properties, also
known as the Roe conditions:

1. Âi−1/2 must retain the hyperbolicity of the system. The Roe matrix is diago-
nalizable with real eigenvalues.

2. It must be consistent with the exact Jacobian, that is Âi−1/2 (U,U) = A (U).

3. It is conservative across discontinuities: Âi−1/2 (Ui − Ui−1) = F (Ui)−F (Ui−1).

The latter condition is derived from imposing the property on Âi−1/2 that if Ui−1
and Ui are connected by a single wave Wp = Ui − Ui−1 in the Riemann solution,
then Wp should also be an eigenvector of Âi−1/2.

The Roe matrix can also be expressed as

|Âi−1/2| = R̂i−1/2|Λ̂i−1/2|R̂−1
i−1/2, (2.13)
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where R̂i−1/2 is the matrix having the right eigenvectors r̂i−1/2 of Âi−1/2 as its
columns, and |Λ̂i−1/2| is the diagonal matrix containing the absolute value of the
eigenvalues |λ̂i−1/2| of Âi−1/2.

The approximate Riemann solution consists ofm waves proportional to the eigen-
vectors r̂i−1/2 of Âi−1/2, propagating with speeds

spi−1/2 = λ̂pi−1/2 (2.14)

given by the eigenvalues. These waves can be found through the proportionality
coefficients βpi−1/2 by solving the linear system

Ui − Ui−1 =
m∑
p=1

βpi−1/2r̂
p
i−1/2. (2.15)

These coefficients can be interpreted as wave strengths. The solution of the
previous equation is

βpi−1/2 = R̂−1
i−1/2 (Ui − Ui−1) , (2.16)

where the waves can be found as

Wp
i−1/2 = βpi−1/2r̂

p
i−1/2, (2.17)

Finally, an expression for the inter-cell flux may be written as

Fi−1/2 = 1
2
(
F (Ui−1) + F (Ui)

)
− 1

2 |Âi−1/2| (Ui − Ui−1) . (2.18)

The remaining difficulty of the Roe method is actually finding the Roe matrix
Âi−1/2.

2.5.1 Linearization strategies

In the event that the flux F is a rational function of the components of U , Roe
discusses two strategies to find Âi−1/2.

Direct algebraic manipulation

Consider the discrete variants of the differential rules for rational functions:

∆ (p± q) = ∆p±∆q, (2.19)
∆ (pq) = p̄∆q + q̄∆p, (2.20)

∆ (1/q) = −∆q/q̃2, (2.21)

where (̄·) denotes an arithmetic and (̃·) denotes a geometric mean value. For any
rational function y (x1, . . . , xn), any jump ∆y can generally be written in terms of
jumps in xr as

∆y (x1, . . . , xn) =
n∑
r=1

kr∆xr, (2.22)

where the coefficients kr are obtained by repeated application of (2.19)-(2.21) to
∆y.
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Then (2.22) may be extended to the flux vector F (U) to yield

fm(UR)− fm(UL) =
∑
n

âmn
(
uRn − uLn

)
, (2.23)

where âmn, constructed by repeated application of (2.19)-(2.21), are the entries of
Âi−1/2. Here, (·L) = (·i−1) and (·R) = (·i) represent the left side and the right side
terms of the Roe average.

Parameter vectors

Assume that F and U may be expressed through a change of variables as

F = F (χ) , (2.24)
U = U (χ) , (2.25)

for some parameter vector χ (U), where the components of F are at most quadratic
polynomials in the components of χ. Then, by (2.19) and (2.20), any jump in F is
related to jumps in χ exclusively through arithmetic averages, and the Roe matrix
may be obtained as

Â(UR, UL) = A
(
U((χL + χR)/2)

)
. (2.26)

2.5.2 High-resolution terms

A high-resolution extension for the Roe method is described by LeVeque [6] as

Un+1
i = Uni −

∆t
∆x

(
A−∆Ui+1/2 +A+∆Ui−1/2

)
− ∆t

∆x
(
F̂i+1/2 − F̂i−1/2

)
. (2.27)

The waves and wave speeds from the approximate Riemann solution are used to
define

A−∆Ui−1/2 =
m∑
p=1

(
spi−1/2

)−
Wp
i−1/2, (2.28)

A+∆Ui−1/2 =
m∑
p=1

(
spi−1/2

)+
Wp
i−1/2, (2.29)

where Wp
i−1/2 is the pth wave arising in the solution to the Riemann problem at

xi−1/2. m is the number of waves and, since a linearised Riemann solver is used, it
is equal to the number of equations. spi−1/2 is the wave speed of the pth wave and
can also be expressed as (

spi−1/2

)±
= 1

2
(
spi−1/2 ± |s

p
i−1/2|

)
. (2.30)

The flux vector F̂i−1/2 is what LeVeque calls the high-resolution correction given
by

F̂i−1/2 = 1
2

m∑
p=1
|spi−1/2|

(
1− ∆t

∆x |s
p
i−1/2|

)
Ŵp
i−1/2, (2.31)
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where Ŵp is a limited version of the wave Wp
i−1/2.

The limited waves are found by comparing the wave Wp
i−1/2 with the upwind

wave Wp
I−1/2 where

I =

i− 1 spi−1/2 ≥ 0,
i+ 1 spi−1/2 < 0.

(2.32)

The relation between these two waves is given by

Ŵp
i−1/2 = φ(θpi−1/2)Wp

i−1/2, (2.33)

where φ is the flux-limiter function, and θpi−1/2 is a measure of the smoothness of
the pth characteristic component of the solution:

θpi−1/2 =
Wp
I−1/2 · W

p
i−1/2

Wp
i−1/2 · W

p
i−1/2

. (2.34)

Herein · denotes the scalar product in Rm.

High-resolution limiters

The high-resolution limiters produce methods that are formally first-order, but they
approach second-order methods for smooth solutions.

One of these limiters is the Monotonized Central difference (MC), which is de-
fined by

φ (θ) = max (0,min ((1 + θ)/2, 2, 2θ)) . (2.35)

2.5.3 Harten’s entropy fix

According to Toro [12], linearised Riemann problem solutions (given in this case, by
the Roe method) consist of discontinuous jumps only, which means that they can
provide a good approximation for contacts and shocks. Rarefaction waves, on the
other hand, consist of a continuous change in the flow variables. As time increases,
they tend to spread and the linearised approximation by discontinuous jumps be-
comes grossly incorrect. In a numeric context, only when the rarefaction is transonic
or sonic, the linearised approximations encounter difficulties giving unphysical re-
sults in the form of entropy violating discontinuous waves.

Another possibility of viewing the effect of the entropy violation is commented
by LeVeque [6]. The second term in the right-side of the Roe flux relation (2.18),
also called the viscous term, will be close to zero in a transonic rarefaction, as the
eigenvalues related to the sound speed could tend to zero. With sufficient viscosity,
one should not observe entropy-violating shocks.

Harten’s entropy fix is based on increasing the viscosity by modifying |λ̂i−1/2|
appearing in (2.13), never allowing any eigenvalue λ̂i−1/2 to be too close to zero

φδ(λ̂j) =
{
|λ̂j | |λ̂j | ≥ δ,
(λ̂2
j + δ2)/2δ |λ̂j | < δ.

(2.36)

A disadvantage of this approach is that the parameter δ must be typically tuned
to the problem.
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When the high-resolution extension for the Roe method is used, the Harten’s
entropy fix is achieved by redefining the relation (2.30) employed for the wave speed
in the equation (2.27)

λ± = 1
2 (λ± φδ(λ)) . (2.37)

2.6 The Rough scheme
The Rough scheme consists on imposing a Roe-like flux of the form

Fi−1/2 = 1
2
(
F (Ui−1) + F (Ui)

)
− 1

2 |Āi−1/2| (Ui − Ui−1) , (2.38)

where, for example, one can choose Āi−1/2 = A ((Ui−1 + Ui) /2), A being the Jaco-
bian matrix of the system. The matrix |Āi−1/2| can also be decomposed as

|Āi−1/2| = R̄i−1/2|Λ̄i−1/2|R̄−1
i−1/2, (2.39)

as reported previously for the Roe method.

2.7 Numerical formally path-consistent schemes
According to [11], the class of numerical conservative schemes for conservation laws
like those presented above, are a special case of the more general class of formally
path-consistent schemes.

Given a nonconservative system of balance laws of the form
Ut + F (U)x +B (U)W (U)x = S (U) , (2.40)

a scheme in the form
Un+1
i − Uni

∆t +
Fi+1/2 − Fi−1/2

∆x +
D+
i−1/2 +D−i+1/2

∆x = Si, (2.41)

where
D+
i+1/2 = Bi+1/2

(
Wi+1 −Wi+1/2

)
, (2.42)

D−i+1/2 = Bi+1/2
(
Wi+1/2 −Wi

)
, (2.43)

Bi+1/2 = Bi +Bi+1
2 (2.44)

is formally consistent with a certain family of paths (an exhaustive demonstration
of this statement can be found at [11]). These new nonconservative schemes will
satisfy the following properties:

1. The schemes should reduce to their standard conservative formulation if the
matrix B is constant:

∂U

∂t
+ ∂G (U)

∂x
= 0, (2.45)

with
G ≡ F +BW (2.46)

whenever B is constant.

2. The schemes should be formally path-consistent.





Chapter 3

Thermodynamic considerations

A system of PDEs such as (2.1) to solve fluid problems is insufficient to fully describe
the physical processes involved. There are more unknowns than equations and thus
closure conditions are required. This can be solved by introducing an equation of
state (EOS).

In the p−v−T systems, defined by the pressure, specific volume and temperature,
one can relate these variables via the thermal equation of state. This chapter presents
different EOSes which will be applied in the numerical resolution of fluid problems.

3.1 Isothermal gas
The EOS for this special case is

p = p (ρ) ≡ ρc2, (3.1)
where ρ is the density of the fluid and c is a non-zero constant propagation speed of
sound.

3.2 Isentropic gas
This EOS is given by

p = p (ρ) ≡ Cργ , C ≡ constant, (3.2)
where γ is the ratio of specific heats or adiabatic exponent defined as

γ = cp
cv
, (3.3)

where cp and cv are the specific heat capacities at a constant pressure and volume,
respectively.

3.3 Ideal gas
The ideal thermal EOS can be expressed as

pV = nRT, (3.4)
where V is the volume, R = 8.134 J mol−1 K−1 is the Universal Gas Constant, and
T is the absolute temperature.

11
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3.4 Stiffened gas equation of state
This EOS can be written as a pressure law

p (ρ, e) = (γ − 1) ρ (e− e∗)− γp∞, (3.5)

where e is the internal energy of the fluid; γ, e∗ and p∞ are constants specific to the
fluid. Herein, e∗ becomes relevant when phase transitions are involved: not taken
into account in this work. On the other hand, p∞ leads to the stiffened properties
compared to ideal gases (note in particular that p∞ = 0 leads to the ideal-gas law).

The sound velocity is given by the expression

c =
√(

∂p

∂ρ

)
s

=
√
γ
p+ p∞
ρ

, (3.6)

where p∞ can be interpreted as a parameter that stiffens an ideal gas by increasing
its sound velocity.

According to the common literature [3], the density can be expressed as

ρ = p+ p∞
(γ − 1) cvT

. (3.7)

The internal energy is given by

e = cp
γ
T + p∞

ρ
+ e∗. (3.8)

The entropy can be written as

s = cv ln
(
p+ p∞
ργ

)
. (3.9)



Chapter 4

Numerical resolution of the
Euler equations

This chapter introduces, as a preliminary study of the more complex multiphase
flows, the one-dimensional Euler equations. The aim of this chapter is to show the
numerical methods applied to this particular system of equations in order to be able
to understand the numerical treatment of multiphase flows.

4.1 The conservation-law form of the Euler equations
The one-dimensional Euler equations is a system of non-linear hyperbolic equations
that governs the dynamics of a compressible fluid for which the effects of body forces,
viscous stresses and heat flux are neglected.

In vector notation this system reads

Ut + F (U)x = 0, (4.1)

with

U =

 ρ
ρv
E

 , F (U) =

 ρv
ρv2 + p
v (E + p)

 . (4.2)

The variables ρ, v, p and E are the density, velocity, pressure and total energy
of the fluid, respectively. U is the column vector of conserved variables and F (U)
is the flux vector in the x direction. As discussed in Section 2.1, the system (4.1)
represents a system of conservation laws.

4.2 Quasilinear form
The system (4.1) can also be written in quasilinear form

Ut +AUx = 0, (4.3)

with

A (U) = ∂F

∂U
=

 ∂f1/∂u1 ∂f1/∂u2 ∂f1/∂u3
∂f2/∂u1 ∂f2/∂u2 ∂f2/∂u3
∂f3/∂u1 ∂f3/∂u2 ∂f3/∂u3

 . (4.4)

13
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In this hyperbolic system, the eigenvalues of the Jacobian matrix are

λ1 = v − c, λ2 = v, λ3 = v + c, (4.5)

where c is the speed of sound. The eigenvectors associated to these eigenvalues are

K1 =

 1
v − c
H − vc

 , K2 =

 1
v

v2/2

 , K3 =

 1
v + c
H + vc

 , (4.6)

where H is the total enthalpy
H = E + p

ρ
. (4.7)

4.3 Closure considerations
In order to solve the problem (4.1), one must add an EOS. From now on, only
isothermal, isentropic and ideal EOSes are going to be considered.

For the isothermal and isentropic EOSes the pressure is related, in a direct way,
to another variable such as the density or a constant, as one can see in (3.1) and
(3.2) respectively, closing easily the problem.

When the ideal gas EOS is considered, this relation is less straightforward. One
way of combining the system (4.1) with the ideal thermal EOS (3.4) is by using the
expression of the total energy

E = ρe+ 1
2ρv

2, (4.8)

In the particular case of an ideal gas, e is only a function of the temperature

e = cvT, (4.9)

and it is possible to relate cv and R through the relation

cv = R
γ − 1 , (4.10)

and consequently arrive to a new expression for the total energy

E = 1
2ρv

2 + p

(γ − 1) ρ, (4.11)

closing finally the problem.
Once the problem is closed, it is possible to apply one of the numerical schemes

already discussed.

4.4 Numerical tests
This section presents the numerical results obtained by resolving the Riemann prob-
lem (2.4) applied to the system (4.1) using three different EOSes and the Lax-
Friedrichs and Roe schemes for the intercell flux.
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4.4.1 Isothermal gas

Numerical simulations were performed on a grid representing the unit interval with
up to 1000 cells. The initial conditions were zero velocity and a density discontinuity:
ρL = 1.4 and ρR = 1 at x = 0.5. The speed of sound was c = 1 and therefore the
values of the pressure were fixed. The simulation time was up to 0.35 units using a
CFL number 0.5. The solution of this problem consists on two density and velocity
waves propagating away from the initial discontinuity.

Figure 4.1 shows the density profiles at t = 0.35 for different number of cells
using the Lax-Friedrichs scheme, Figure 4.1(a), and the Roe scheme, Figure 4.1(b).
In both cases, it is possible to appreciate that the results converge as the number
of cells increases. It is important to note that, for the same number of cells, the
Lax-Friedrichs scheme smears the solution more than the Roe method.

Figure 4.2 shows the velocity profiles, Figure 4.2(a), and the pressure profiles,
Figure 4.2(b), at different times. They have been obtained using the Roe method
on a grid of 500 cells.

4.4.2 Isentropic gas

Numerical simulations were performed using the same procedure as in the previous
section. Nevertheless, the isentropic gas EOS requires the definition of the constant
C in equation (3.2) instead of using a constant value for the sound speed. The value
γ = 1.4 was chosen during the simulations. The initial conditions were zero velocity
and a discontinuity at x = 0.5 in the density, ρL = 1.4 and ρR = 1, and in the
pressure. For the left-hand side of the discontinuity pL = 1.4 was chosen and then,
the value of C was calculated using (3.2). The value pR ≈ 0.89 was determined using
once more (3.2). The simulation time was up to 0.35 units using a CFL number 0.5.
The nature of the solution of this problem is similar to that of the isothermal gas.

Figure 4.3 shows the density profiles at t = 0.35 for different number of cells
using the Lax-Friedrichs scheme, Figure 4.3(a), and the Roe scheme, Figure 4.3(b).
The same conclusions as in the isothermal gas can be applied to the isentropic gas.

Figure 4.4 shows the velocity profiles, Figure 4.4(a), and the pressure profiles,
Figure 4.4(b), at different times. They have been obtained using the Roe method
on a grid of 500 cells, as in the isothermal case. Note the difference between Fig-
ures 4.2(b)-4.4(b) in the values at the boundaries.

4.4.3 Ideal gas

The simulations performed in this case were inspired by a modified version of the
popular Sod’s test extracted from Section 11.5.1 of the book of Toro [12]. It consists
on a discontinuity at x = 0.3 in a unit-interval grid with the following values for the
primitive variables: ρL = 1, uL = 0.75, pL = 1; ρR = 0.125, uR = 0 and pR = 0.1.
The solution to this test consists of a right shock wave, a right-travelling contact
wave and a left sonic rarefaction wave, so that the entropy fix will be necessary
when the Roe scheme will be utilised.

As in the previous case, γ = 1.4 was adopted. The simulation time was 0.2 units
using a CFL number 0.9 and up to 2000 grid cells. These values are the same as
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(a) Lax-Friedrichs scheme.
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(b) Roe scheme.

Figure 4.1: Isothermal gas. Riemann problem with a discontinuity in the density
at x = 0.5. Convergence of the density profiles using the Lax-Friedrichs scheme (a)
and the Roe scheme (b). The CFL number was 0.5.
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(b) Pressure profiles.

Figure 4.2: Isothermal gas. Riemann problem with a discontinuity in the density at
x = 0.5 solved using the Roe scheme on a grid of 500 cells. Results for the velocity
profile (a) and for the pressure profile (b) for three different times. The CFL number
was 0.5.
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(b) Roe scheme.

Figure 4.3: Isentropic gas. Riemann problem with a discontinuity at x = 0.5.
Convergence of the density profiles using the Lax-Friedrichs scheme (a) and the Roe
scheme (b). The CFL number was 0.5.
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(b) Pressure profiles.

Figure 4.4: Isentropic gas. Riemann problem with a discontinuity at x = 0.5 solved
using the Roe scheme on a grid of 500 cells. Results for the velocity profile (a) and
for the pressure profile (b) for three different times. The CFL number was 0.5.
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those utilised by Toro so that the results obtained can be directly compared to those
illustrated in Figure 11.5 of his book.

Figure 4.5 shows the density, velocity, pressure and internal energy profiles at
t = 0.2 for a grid composed of 100 cells using the Roe method with and without the
Harten’s entropy fix. The results are compared with those obtained using 2000 grid
cells. As a matter of fact, near the sonic point, the Roe scheme together with the
entropy fix provide a physically valid solution.

In order to compare the solutions obtained with the Lax-Friedrichs and the Roe
methods, Figure 4.6 shows how the Lax-Friedrichs scheme is more diffusive than the
Roe scheme, for the same number of cells. Since the Lax-Friedrichs scheme does
not resolve a linear approximated Riemann problem, the entropy violation is not
observed when this scheme is used.
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(a) Density.
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(b) Velocity.
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(c) Pressure.
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(d) Internal energy.

Figure 4.5: Ideal gas. Riemann problem with a discontinuity at x = 0.3. Density
(a), velocity (b), pressure (c) and internal energy (d) profiles solved using the Roe
method with and without the Harten’s entropy fix. The CFL number was 0.9.
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(a) Density.
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(b) Pressure.

Figure 4.6: Ideal gas. Riemann problem with a discontinuity at x = 0.3. Density
(a) and pressure (b) profiles solved using the Lax-Friedrichs and Roe schemes. The
CFL number was 0.9.



Chapter 5

Numerical resolution of a
five-equation model

This chapter presents the numerical resolution of a simultaneous flow of two fluids
through a transport pipeline. The five-equation model introduces the equality of
temperatures of the flows as a simplification. This is a relatively valid approximation
in pipelines, where the temperatures of the flows are not too different.

Furthermore, this five-equation model presents certain complexity compared to
other models such as the four-equation model in which the temperatures of the
fluids are not taken into account. More complex models like the six-equation model
present an energy equation to each phase and, therefore, the study of heat transfers
between the phases must be considered. In this context, the five-equation model
can be a good approximation whenever the difference of temperatures of the phases
does not become important.

5.1 The two-phase five-equation flow model

The classical two-fluid model is based on balance laws for mass, momentum and
energy for each phase: gas and liquid. In this work, the viscous terms are neglected
and each phase is equipped with an equation of state written in the form

pk = pk (ρk, ek) , (5.1)

for k ∈ {g, l}. As a simplification, mechanical equilibrium and thermal equilibrium
between the phases are assumed

p = pg (ρg, eg) = pl (ρl, el) , (5.2)
T = Tg = Tl. (5.3)

If no mass transfer is assumed between the phases and all external forces but
gravity are ignored, one can obtain a system of equations in which the mass and
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momentum equations may be written as follows

∂ρgαg
∂t

+ ∂ρgαgvg
∂x

= 0, (5.4)
∂ρlαl
∂t

+ ∂ρlαlvl
∂x

= 0, (5.5)

∂ρgαgvg
∂t

+
∂ρgαgv

2
g

∂x
+ αg

∂p

∂x
+ τi = ρgαggx, (5.6)

∂ρlαlvl
∂t

+ ∂ρlαlv
2
l

∂x
+ αl

∂p

∂x
− τi = ρlαlgx, (5.7)

where ρk, αk, and vk represent the density, volume fraction and velocity of each
phase, respectively. In addition, gx represents the gravity along the x-axis and the
term τi is the interface momentum-exchange.

Note that these two phases are sharing a common volume V . The volume fraction
of the phase k is therefore defined by

αk = Vk
V
, (5.8)

where Vk is the total volume occupied by this phase, given by

Vk = Mk

ρk
, (5.9)

where Mk is the total mass of the phase k in the volume V .
Consistency requires then that the sum of the volume fractions of all the present

phases equals Unity ∑
k

αk = 1. (5.10)

Additionally, it is possible to deduce an expression for the total energy of the
system by summing the energy-balance equations of each phase

∂Eg
∂t

+ ∂

∂x

(
Egvg + αgvgp

)
+ p

∂αg
∂t

= ρgαgvggx, (5.11)
∂El
∂t

+ ∂

∂x

(
Elvl + αlvlp

)
+ p

∂αl
∂t

= ρlαlvlgx. (5.12)

where
Ek = ρkαk

(
ek + 1

2v
2
k

)
(5.13)

is the total phasic energy obtained as the sum of the internal energy ek and the
kinetic energy. The total energy can then be expressed as

∂E

∂t
+ ∂

∂x

{
Egvg + Elvl + p (αgvg + αlvl)

}
= (ρgαgvg + ρlαlvl) gx, (5.14)

It is important to clarify that the system of equations defined by (5.4)-(5.7)
and (5.14), also called the five-equation model, is a simplification of the six-equation
model, defined by (5.4)-(5.12), which presents one energy-balance equation for each
phase. A four-equation model can also be obtained from equations (5.4)-(5.7): note
that this model lacks any energy equation.
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To get these models a well-defined mathematical solution, a common approach
consists on including differential terms in the modelling of τi in order to render the
system hyperbolic with real eigenvalues

τi = τD + τF , (5.15)

where τD represents added differential terms and τF must satisfy entropy conditions:
τF = 0 will be chosen in this work. In this context, τD can be interpreted as a
pressure jump δp at the gas-liquid interface

τD = −δp∂αl
∂x

. (5.16)

Following [2], δp is given by

δp = σ
ρgαgρlαl
ρgαl + ρlαg

(vg − vl)2 , (5.17)

where a sufficently large value of σ ensures the hyperbolicity of the system.

5.2 Canonical nonconservative form
Equations (5.4)-(5.7) and (5.14) can be written as a system of hyperbolic partial
differential equations in the non-conservative form

∂U

∂t
+ ∂F (U)

∂x
+B (U) ∂W (U)

∂x
= S (U) (5.18)

with

U =


ρgαg
ρlαl
ρgαgvg
ρlαlvl
E

 , F (U) =


ρgαgvg
ρlαlvl

ρgαgv
2
g + αgδp

ρlαlv
2
l + αlδp

Egvg + Elvl + p (αgvg + αlvl)

 ,

B (U) =


0 0
0 0
αg −αg
αl −αl
0 0

 , W (U) =
[
p
δp

]
,

S (U) =


0
0

ρgαggx
ρlαlgx

(ρgαgvg + ρlαlvl) gx

 .

(5.19)

As it is possible to appreciate, (5.18) is a system of conservation laws augmented
with non-conservative products and source terms and, consequently, further compli-
cations may arise. A generalization of the classic concept of conservative numerical
schemes must be used leading to path-conservative schemes (see section 2.7).
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5.3 Thermodynamic considerations
In the context of a two-phase fluid model, an EOS has to be applied to each phase
k ∈ {g, l} in order to close the system (5.18).

The numerical simulations that will be presented at the end of this chapter will
only use the stiffened gas EOS for both phases. Moreover, mechanical and thermal
equilibrium are going to be considered: the pressure and the temperature of both
phases will be equal.

5.3.1 Numerical algorithm for the pressure

Assuming always mechanical and thermal equilibrium between the phases and know-
ing their properties, the problem of associating the system (5.18) with the stiffened
gas EOS can be presented as follows (see [3]):

Given the partial densities ρkαk and the internal energy of the mixture∑
ρkαkek, calculate the common temperature T , the densities ρk, the

volume fractions αk and the common pressure p.

The proposed task can be easily performed if the values of the pressure and
the temperature are already given. In fact, once these values are known, one can
calculate the densities and the internal energies using the expressions written in
Section 3.4.

For this particular EOS, the temperature can be expressed as a function of the
pressure

T =
∑
ρkαkek + p−

∑
ρkαke∗k∑

ρkαkcpk

, (5.20)

but the pressure has to be calculated using an iterative process with an algorithm
based on the standard Newton-Rapshon method, as described in [3]. According to
this paper, the method

p̂n+1 = p̂n + 1− g (p̂n)
g′ (p̂n)

(
1− 1− g (p̂n) + |1− g (p̂n)|

2g′ (p̂n) h (p̂n)
)−1

, (5.21)

where
g (p) =

∑
Ak

z

z + qk
, g′ (p) =

∑
Ak

qk

(z + qk)2 , (5.22)

and

Ak = γk − 1
γk

ρkαkcpk∑
ρkαkcpk

, (5.23)

z =
∑

ρkαkek + p−
∑

ρkαke∗k
, (5.24)

qk = p∞k
−
∑

ρkαkek +
∑

ρkαke∗k
, (5.25)

h = 1
z

+ 1
p+ mink p∞k

, (5.26)

converges monotonically and quadratically to the unique physically valid solution
p. Once the pressure is known, the rest of the demanded variables can be directly
calculated.
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5.4 Approximate eigenvalues

In order to calculate the eigenvalues, one must rewrite the system (5.18) in the
quasilinear form

∂U

∂t
+A (U) ∂U

∂x
= S (U) , (5.27)

so that the Jacobian matrix and its associated eigenvalues can be analytically cal-
culated. This could lead to complicated expressions and, therefore, it is preferable
to take approximate eigenvalues. For the Lax-Friedrichs scheme, the eigenvalues de-
duced from the four-equation model (valid only to low order in vg − vl) are going to
be taken as approximate eigenvalues for the five-equation model in order to estimate
the time step ∆t. According to [1], the eigenvalues corresponding to the system of
four balance laws can be written as

λp = v̄p ± ĉ (5.28)

for the pressure waves and
λv = v̄v ± β (5.29)

for the volume fraction waves. The following expressions are utilised:

vp = ρgαlvl + ρlαgvg
ρgαl + ρlαg

, (5.30)

vv = ρgαlvg + ρlαgvl
ρgαl + ρlαg

, (5.31)

β =

√√√√δp (ρgαl + ρlαg)− ρlαlρgαg(vg − vl)2

(ρgαl + ρlαg)2 , (5.32)

together with an approximate mixture sound velocity given by

ĉ =
√

ρlαg + ρgαl
(∂ρg/∂p)sρlαg + (∂ρl/∂p)sρgαl

. (5.33)

5.5 Jacobian matrix

As one can see, an analytical expression for the Jacobian matrix must be found to
be able to obtain the eigenvalues associated with the system (5.18). Another reason
to find this matrix comes from the fact that it will be used later in other numerical
methods like the Roe method in which the Jacobian and the Roe matrices are related.

When the nonconservative system (5.18) is written in quasilinear form (5.27),
the following expression for the Jacobian matrix

A (U) = ∂F

∂U
+B

∂W

∂U
(5.34)

can be found.
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5.5.1 Simplified notation

It is convenient to rewrite the expressions (5.19) using a more convenient notation
based on the definitions of the volumetric mass

mk = ρkαk, (5.35)
and the volumetric momentum

Ik = ρkαkvk, (5.36)
for each phase:

U =


mg

ml

Ig
Il
E

 , F (U) =


Ig
Il

Igvg + αgδp
Ilvl + αlδp

Egvg + Elvl + p (αgvg + αlvl)

 ,

B (U) =


0 0
0 0
αg −αg
αl −αl
0 0

 , W (U) =
[
p
δp

]
,

S (U) =


0
0

mggx
mlgx

(Ig + Il) gx

 .

(5.37)

5.5.2 Differentials

The method utilised in this work to calculate A consists on expressing the variables
located in the rows of F and BW in terms of the conserved variables U , so that the
differentiation presented in (5.34) can be easily performed.

The derivatives of the conserved variables can be expressed as a vector

dU =


du1
du2
du3
du4
du5

 =


dmg

dml

dIg
dIl
dE

 . (5.38)

Furthermore, using the relation
dIk = dmkvk +mkdvk, (5.39)

one can obtain the derivatives of the velocities of each phase as a function of the
conserved variables:

dvg = du3 − vgdu1
mg

, (5.40)

dvl = du4 − vldu2
ml

. (5.41)
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With this information, one can easily obtain the two first rows of the Jacobian
matrix. However, the other rows, corresponding to the momentum and energy
equations, require some additional work.

Consider now the third and fourth rows of (5.34). These rows correspond to the
conservative and non-conservative flux terms related to the momentum equations of
the system (5.18), for the gas phase and liquid phase respectively.

For the gas, the third row may be written as(
∂F

∂U
+B

∂W

∂U

)
3

= Ig∇vg + vg∇Ig + δp∇αg + αg∇p, (5.42)

where the operator gradient of a scalar has been introduced

∇ (·) =



∂ (·) /∂u1
...

∂ (·) /∂up
...

∂ (·) /∂u5


. (5.43)

An analogous expression is obtained for the liquid phase(
∂F

∂U
+B

∂W

∂U

)
4

= Il∇vl + vl∇Il + δp∇αl + αl∇p. (5.44)

The fifth row of (5.34) corresponds to the energy equation of (5.18) and may be
expressed as(

∂F

∂U
+B

∂W

∂U

)
5

= Eg∇vg + vg

{(
eg + 1

2v
2
g

)
∇mg +mg (∇eg + vg∇vg)

}
+El∇vl + vl

{(
el + 1

2v
2
l

)
∇ml +ml (∇el + vl∇vl)

}
+ (αgvg + αlvl)∇p+ p {αg∇vg + αl∇vl + (vg − vl)∇αg} ,

(5.45)

where the total energy of each phase has been decomposed into internal energy and
kinetic energy. The property (5.10) has been used as well.

5.5.3 Thermodynamic considerations

As the reader can imagine, one should express the differentials of eg, el, αg and p
as a function of the conserved variables and, consequently, thermodynamic relations
must be considered.

General equations of state will be considered in this work. In particular, two
independent EOSes are introduced

ρk = ρk (T, p) , (5.46)
ek = ek (T, ρk) , (5.47)

and therefore, their differentials

dρk = ∂ρk
∂T

∣∣∣∣
p

dT + ∂ρk
∂p

∣∣∣∣
T

dp, (5.48)

dek = ∂ek
∂T

∣∣∣∣
ρk

dT + ∂ek
∂ρk

∣∣∣∣
T

dρk. (5.49)
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It would be convenient to introduce some simplifications for these two last rela-
tions

ak = ∂ρk
∂T

∣∣∣∣
p
, bk = ∂ρk

∂p

∣∣∣∣
T

, ck = ∂ek
∂T

∣∣∣∣
ρk

, dk = ∂ek
∂ρk

∣∣∣∣
T

. (5.50)

In the particular case that the stiffened gas EOS is considered for both phases,
the partial derivatives (5.50) may be written as

ak = − pk + p∞k

(γk − 1) cvk
T 2 , (5.51)

bk = 1
(γk − 1) cvk

T
, (5.52)

ck = cvk
, (5.53)

dk = −p∞k

ρ2
k

. (5.54)

5.5.4 Closure considerations

The problem of finding deg, del, dαg and dp requires, apart from the previous
thermodynamic relations (5.48)-(5.49), two additional equations.

In particular, the following expression for the total energy must be used

mgdeg +mldel = du5 −
(
eg −

1
2v

2
g

)
du1 −

(
el −

1
2v

2
l

)
du2 − vgdu3 − vldu4. (5.55)

Another expression to be utilised comes from (5.10) which can also be expressed
as d (αg + αl) = 0. However, it is more convenient to write this equation as

du1
ρg

+ du2
ρl

= qdT + rdp, (5.56)

where

q =
∑
k

αkak
ρk

, r =
∑
k

αkbk
ρk

. (5.57)

The resolution of the system of equations given by the relations (5.48)-(5.49),
(5.55) and (5.56) allows to express the differentials dρg, dρl, deg, del, dT and dp as
functions of the derivatives of the conserved variables dU .
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The final results of this system may be written in the form of gradients

∇ρg = λ−1


v̇2
gxg + (η2 − bg

∑
kmkck) /ρg

v̇2
l xg + (η2 − bg

∑
kmkck) /ρl

−vgxg
−vlxg
xg

 , (5.58)

∇p = λ−1


v̇2
gq −

∑
kmk (akdk + ck) /ρg

v̇2
l q −

∑
kmk (akdk + ck) /ρl
−vgq
−vlq
q

 , (5.59)

∇eg = λ−1


v̇2
gzg + (dgη2 +mlξ) /ρg
v̇2
l zg + (dgη2 +mlξ) /ρl

−vgzg
−vlzg
zg

 , (5.60)

∇el = λ−1


v̇2
gzl + (dlη1 −mgξ) /ρg
v̇2
l zl + (dlη1 −mgξ) /ρl

−vgzl
−vlzl
zl

 , (5.61)

where

λ = −r
∑
k

mk (akdk + ck) + q
∑
k

mkbkdk, (5.62)

v̇2
k = 1

2v
2
k − ek, (5.63)

xk = −akr + bkq, (5.64)
zk = −r (akdk + ck) + qbkdk, (5.65)

ξ = cgbldl − clbgdg, (5.66)
η1 = mgdg (albg − agbl) , (5.67)
η2 = mldl (agbl − albg) . (5.68)

For the gas volume fraction, it is recommendable to use the definition of mg

∇αg = −∇αl = du1
ρg


1
0
0
0
0

−
αg
ρg
∇ρg. (5.69)

Finally, the differentials are obtained by application of the definition of the gra-
dient

d (·) = ∇ (·) · dU. (5.70)
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5.5.5 Analytical expressions

Now it is possible to fully determine the Jacobian matrix. This matrix has been
split into one convective matrix and two pressure matrices

A = Ac +Ap1 +Ap2 . (5.71)

Using the notation

d (·) =
5∑
p=1

(·)pdup (5.72)

for the partial derivatives of ρg, ρl, eg, el, T , p and αp, the convective matrix may
be written as

Ac =


0 0 1 0 0
0 0 0 1 0
−v2

g 0 2vg 0 0
0 −v2

l 0 2vl 0
ac1 ac2 ac3 ac4 ac5

 , (5.73)

where

ac1 = Igeg1 + Ilel1 − v3
g , (5.74)

ac2 = Igeg2 + Ilel2 − v3
l , (5.75)

ac3 = eg + 3
2v

2
g + Igeg3 + Ilel3 , (5.76)

ac4 = el + 3
2v

2
l + Igeg4 + Ilel4 , (5.77)

ac5 = Igeg5 + Ilel5 . (5.78)

The pressure matrices may be written as

Ap1 = δpαg
ρg


0 0 0 0 0
0 0 0 0 0

1/αg − ρg1 −ρg2 −ρg3 −ρg4 −ρg5

ρg1 − 1/αg ρg2 ρg3 ρg4 ρg5

0 0 0 0 0

 , (5.79)

Ap2 =


0 0 0 0 0
0 0 0 0 0

αgp1 αgp2 αgp3 αgp4 αgp5
αlp1 αlp2 αlp3 αlp4 αlp5
ap1 ap2 ap3 ap4 ap5

 , (5.80)
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where

ap1 =
∑
k

αkvkp1 − p
(
vg
ρg

+ (vg − vl)αgρg1

ρg

)
, (5.81)

ap2 =
∑
k

αkvkp2 − p
(
vl
ρl

+ (vg − vl)αgρg2

ρg

)
, (5.82)

ap3 =
∑
k

αkvkp3 + p

(
1
ρg

+ (vg − vl)αgρg3

ρg

)
, (5.83)

ap4 =
∑
k

αkvkp4 + p

(
1
ρl

+ (vg − vl)αgρg4

ρg

)
, (5.84)

ap5 =
∑
k

αkvkp5 − p
(vg − vl)αgρg5

ρg
. (5.85)

5.6 Roe matrix
The Roe matrix can be obtained using the same procedure described for the Jacobian
matrix.

The method based on direct algebraic manipulation described in Section 2.5.1 has
been utilised since the introduction of a energy equation for the mixture complicates
the obtaining of a parameter vector. Therefore, relations (2.19)-(2.22) have been used
along with the third condition of Roe:

Âi−1/2 (Ui − Ui−1) = F (Ui)− F (Ui−1) . (5.86)

It is important to clarify that the Roe matrix is an average matrix and there-
fore one should be careful in the treatment of the arithmetic averages (·) and the
geometric averages (̃·).

5.6.1 Differentials

In order to simplify the notation, it would be convenient to introduce the operator
∆ to indicate a jump in a variable. Applied to the column vector of the conserved
variables U yields

∆U = Ui − Ui−1, (5.87)

and therefore the third condition of Roe can be rewritten as

Âi−1/2∆U = ∆F. (5.88)

While the derivatives of the conserved variables were necessary to obtain the Ja-
cobian matrix, the Roe matrix requires the derivatives of the jumps of the conserved
variables

d∆U =


d∆u1
d∆u2
d∆u3
d∆u4
d∆u5

 =


d∆mg

d∆ml

d∆Ig
d∆Il
d∆E

 . (5.89)
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The discrete variants of the differential rules for rational functions (2.19)-(2.22)
have to be taken into account and consequently the relation (5.39) must be expressed
as

d∆Ik = d∆mkvk +mkd∆vk, (5.90)
leading to the following expressions for the velocities of each phase:

d∆vg = d∆u3 − vgd∆u1
mg

(5.91)

d∆vl = d∆u4 − vld∆u2
ml

. (5.92)

Equations (5.42), (5.44) and (5.45) may be rewritten as(
∂∆F
∂∆U +B

∂∆W
∂∆U

)
3

= Ig∇(∆vg) + vg∇(∆Ig) + δp∇(∆αg) + αg∇(∆p), (5.93)(
∂∆F
∂∆U +B

∂∆W
∂∆U

)
4

= I l∇(∆vl) + vl∇(∆Il) + δp∇(∆αl) + αl∇(∆p), (5.94)(
∂∆F
∂∆U +B

∂∆W
∂∆U

)
5

=

Eg∇(∆vg) + vg

{
eg + 1

2v
2
g∇(∆mg) +mg

(
∇(∆eg) + vg∇(∆vg)

)}

El∇(∆vl) + vl

{
el + 1

2v
2
l∇(∆ml) +ml

(
∇(∆el) + vl∇(∆vl)

)}
+αgvg + αlvl∇(∆p) + p

{
αg∇(∆v)g + αl∇(∆vl) + vg − vl∇(∆αg)

}
.

(5.95)

where
(
·
)
represents the average over a certain formally consistent path as described

in Section 2.7.

5.6.2 Thermodynamic considerations

Relations (5.48)-(5.49) become

d∆ρk = ∂∆ρk
∂∆T

∣∣∣∣
∆p

d∆T + ∂∆ρk
∂∆p

∣∣∣∣
∆T

d∆p, (5.96)

d∆ek = ∂∆ek
∂∆T

∣∣∣∣
∆ρk

d∆T + ∂∆ek
∂∆ρk

∣∣∣∣
∆T

d∆ρk. (5.97)

Using the same simplifications that those introduced in (5.50), the following
expressions are obtained for the particular case of the stiffened gas equation of state
applied to the phases

âk = − pk + p∞k

(γk − 1) cvk
T̃ 2
, (5.98)

b̂k = 1
(γk − 1) cvk

T
, (5.99)

ĉk = cvk
, (5.100)

d̂k = −p∞k

ρ̃2
k

. (5.101)
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5.6.3 Closure considerations

Two additional equations must be introduced in order to find the differentials of
∆eg, ∆el, ∆αg and ∆p. Thus, the average of the total energy equation (5.55) may
be expressed as

mgd∆eg +mld∆el = d∆u5 − v̂2
gd∆u1 − v̂2

l d∆u2 − vgd∆u3 − vld∆u4, (5.102)

where
v̂2
k = v2

k −
1
2v

2
k − ek. (5.103)

And the average of equation (5.56) may be rewritten as

d∆u1
ρg

+ d∆u2
ρl

= q̂d∆T + r̂d∆p, (5.104)

where

q̂ =
∑
k

αkâk
ρk

, r̂ =
∑
k

αk b̂k
ρk

. (5.105)

Finally, the resolution for this problem gives the following expressions, written
in the form of gradients:

∇(∆ρg) = λ̂−1



v̂2
g x̂g +

(
η̂2 − b̂g

∑
kmk ĉk

)
/ρg

v̂2
l x̂g +

(
η̂2 − b̂g

∑
kmk ĉk

)
/ρl

−vgx̂g
−vlx̂g
x̂g


, (5.106)

∇(∆p) = λ̂−1



v̂2
g q̂ −

∑
kmk

(
âk b̂k + ĉk

)
/ρg

v̂2
l q̂ −

∑
kmk

(
âk b̂k + ĉk

)
/ρl

−vg q̂
−vlq̂
q̂


, (5.107)

∇(∆eg) = λ̂−1



v̂2
g ẑg +

(
b̂gη̂2 +mlξ̂

)
/ρg

v̂2
l ẑg +

(
b̂gη̂2 +mlξ̂

)
/ρl

−vg ẑg
−vlẑg
ẑg


, (5.108)

∇(∆el) = λ̂−1



v̂2
g ẑl +

(
b̂lη̂1 −mg ξ̂

)
/ρg

v̂2
l ẑl +

(
b̂lη̂1 −mg ξ̂

)
/ρl

−vg ẑl
−vlẑl
ẑl


, (5.109)



34 5. Numerical resolution of a five-equation model

where

λ̂ = −r̂
∑
k

mk

(
âkd̂k + ĉk

)
+ q̂

∑
k

mk b̂kd̂k, (5.110)

x̂k = −âkr̂ + b̂kq̂, (5.111)

ẑk = −r̂
(
âkd̂k + ĉk

)
+ q̂b̂kd̂k, (5.112)

ξ̂ = ĉg b̂ld̂l − ĉlb̂gd̂g, (5.113)

η̂1 = mgd̂g
(
âlb̂g − âg b̂l

)
, (5.114)

η̂2 = mld̂l
(
âg b̂l − âlb̂g

)
. (5.115)

5.6.4 Analytical expressions

Finally, one should arrive to the expression of the Roe matrix by following the same
steps taken in the development of the Jacobian matrix

Â = Âc + Âp1 + Âp2 , (5.116)

where

Âc =


0 0 1 0 0
0 0 0 1 0

−Igvg/mg 0 Ig/mg + vg 0 0
0 −I lvl/ml 0 I l/ml + vl 0
âc1 âc2 âc3 âc4 âc5

 , (5.117)

with

âc1 = −Egvg
mg

− vgv̂2
g +mgvg∆eg1 +mlvl∆el1 , (5.118)

âc2 = −Elvl
ml
− vlv̂2

l +mgvg∆eg2 +mlvl∆el2 , (5.119)

âc3 = Eg
mg

+ v2
g +mgvg∆eg3 +mlvl∆el3 (5.120)

âc4 = El
ml

+ v2
l +mgvg∆eg4 +mlvl∆el4 (5.121)

âc5 = mgvg∆eg5 +mlvl∆el5 . (5.122)

Note that a similar notation for the partial derivatives described in equation (5.72)
has been employed in this case

d∆ (·) =
5∑
p=1

∆ (·)pd∆up. (5.123)
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The pressure matrices may be written as

Âp1 = ∆pαg
ρg


0 0 0 0 0
0 0 0 0 0

1/αg −∆ρg1 −∆ρg2 −∆ρg3 −∆ρg4 −∆ρg5
∆ρg1 − 1/αg ∆ρg2 ∆ρg3 ∆ρg4 ∆ρg5

0 0 0 0 0

 , (5.124)

Âp2 =


0 0 0 0 0
0 0 0 0 0

αg∆p1 αg∆p2 αg∆p3 αg∆p4 αg∆p5
αl∆p1 αl∆p2 αl∆p3 αl∆p4 αl∆p5
âp1 âp2 âp3 âp4 âp5

 , (5.125)

where

âp1 =
∑
k

αkvk∆p1 − p
(
αgvg
mg

+ vg − vl
αg∆ρg1 − 1

ρg

)
, (5.126)

âp2 =
∑
k

αkvk∆p2 − p
(
αlvl
ml

+ vg − vl
αg∆ρg2

ρg

)
, (5.127)

âp3 =
∑
k

αkvk∆p3 + p

(
αg
mg
− vg − vl

αg∆ρg3

ρg

)
, (5.128)

âp4 =
∑
k

αkvk∆p4 + p

(
αl
ml
− vg − vl

αg∆ρg4

ρg

)
, (5.129)

âp5 =
∑
k

αkvk∆p5 − pvg − vl
αg∆ρg5

ρg
. (5.130)

The reader can check that the Roe matrix converges to the Jacobian matrix
when the data in two neighbouring cells are equal, satisfying the second condition
of Roe described in Section 2.5.

5.7 Considerations about the Jacobian and Roe matri-
ces

The validity of the Jacobian matrix has been tested numerically and by application
of other analytical methods (see Section 3.2 of [8]).

The validity of the Roe matrix has also been verified assuring numerically the
equality of the second and third conditions described by Roe (see Section 2.5). In
fact, the second condition can be proved directly using the previous expressions
for the Jacobian and Roe matrices. The third condition of Roe (equation (5.86))
has been checked numerically. Thus, for the momentum equations, the maximum
absolute difference between the left term and the right term in expression (5.86) was
smaller than 10−8. For the energy equation, this difference was smaller than 10−6.

In the moving discontinuity and Toumi’s shock tube tests (which will be pre-
sented in the next Section), the velocities of both phases are equal at a certain point
(they are always equal in the moving discontinuity problem). As a consequence of
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this equality between the velocities, complex eigenvalues have been obtained during
the decomposition of the Jacobian and Roe matrices (equation (2.13)). However,
the complex parts of these eigenvalues were several orders of magnitude smaller than
the real parts and, therefore, ignoring them has verified to work in these tests.

Nevertheless, a deep analysis in these particular cases must be considered. But
this study may exceed the contents of this Master’s Thesis.

5.8 Numerical simulations
This section presents some benchmarks cases from the literature that have already
been studied in [11] using the four- and six-equation models for a two-phase flow.

Different numerical schemes have been tested and convergence simulations have
been performed in order to verify the validity of the solutions provided by the five-
equation model governed by the stiffened gas EOS. Finally, comparisons between
the three models have been made in order to show their differences.

5.8.1 Moving discontinuity

This is a basic benchmark with no source terms present. The initial conditions
consist of uniform velocities, temperature and pressure, but there is a jump in the
gas volume fraction at the middle of a 12 m long horizontal tube (see Table 5.1).
Due to these initial conditions, variations should not be introduced in the velocities
or in the pressure.

1 2v-

Figure 5.1: The moving discontinuity problem.

Table 5.1: Initial state for the moving-discontinuity problem. Different values of ε
were set depending on the numerical scheme used.

Quantity Symbol (unit) Left Right
Gas vol. frac. αg (−) 1− ε ε
Pressure p (MPa) 0.1 0.1
Gas velocity vg (m/s) 100 100
Liq. velocity vl (m/s) 100 100
Temperature T (K) 315.9 315.9

The EOS parameters used during the numerical simulations are those given in
Table 5.2. The CFL number was set to 0.5. Note that in this particular test, the
value σ in equation (5.17) does not have influence because the difference of velocities
in (5.17) remains zero at any time.

Convergence of the Lax-Friedrichs scheme

Figure 5.2 shows the convergence of the Lax-Friedrichs scheme at t = 0.03 s. The
value ε = 10−12 was set during these simulations.
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Table 5.2: EOS parameters employed in the simulations.

γk p∞k
cpk

(−) (Pa)
(
J kg−1 K−1)

gas (g) 1.4 0 1008.7
liguid (l) 2.8 8.5× 108 4186

Ideally the volume fraction should be advected and not smeared, but the Lax-
Friedrichs scheme tends to smear the results even for a large number of cells, as
illustrated in Figure 5.2(a). On the other hand, Figure 5.2(b) shows how the pressure
is not disturbed; in fact, numerical results demonstrated that the order of magnitude
of the maximum relative difference of the values of the pressure given by

E = 1
p0 max

∀n

{∣∣∣∣max
∀i

pni −min
∀i

pni

∣∣∣∣} , (5.131)

was about 10−8.

Comparison between different schemes

Figure 5.3 shows the results obtained using the Lax-Friedrichs scheme (LxF), Roe
first order and the higher-order extension of Roe using the MC limiter at t = 0.03 s.
Since the Roe method is not as robust as Lax-Friedrichs, the simulations were per-
formed using ε = 10−1. For smaller values of ε the solutions become unstable and
only the Lax-Friedrichs scheme can be used.

Additionally, the maximum relative difference of the pressure was calculated for
the different schemes. Thus, E = 0 was obtained when the Lax-Friedrichs scheme
was utilised. On the other hand, the values E ≈ 10−9 and E ≈ 10−10 were calculated
using the Roe first order scheme and the higher-order extension of Roe, respectively.

5.8.2 Toumi’s shock tube

This problem consists of a 100 m tube divided by a membrane at the middle. At
t = 0 s, the membrane ruptures and the flow starts evolving. The initial conditions
are given in Table 5.3 and the employed EOS parameters are displayed in Table 5.2.
The value σ = 2 in equation (5.17) was used for this test and the CFL was 0.5. No
source terms were considered.

Table 5.3: Initial state for the Toumi’s shock tube problem.

Quantity Symbol (unit) Left Right
Gas vol. frac. αg (−) 0.25 0.1
Pressure p (MPa) 20 10
Gas velocity vg (m/s) 0 0
Liq. velocity vl (m/s) 0 0
Temperature T (K) 308.15 308.15
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Figure 5.2: Moving discontinuity. Convergence of the Lax-Friedrichs scheme. Re-
sults for the gas volume fraction profile (a) and for the pressure profile (b) at
t = 0.03 s using a CFL number 0.5 and ε = 10−12.
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Figure 5.3: Moving discontinuity. Results using the Lax-Friedrichs, Roe first order
and Roe with the MC limiter schemes for the gas volume fraction profile (a) and for
the pressure profile (b) using a CFL number 0.5 and ε = 10−1 at t = 0.03 s .
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1 2!

Figure 5.4: Toumi’s shock tube problem.

α
g

(−
)

0 20 40 60 80 100

307

308

309

310

no entropy fix

delta=25

delta=50

delta=75

delta=100

x (m)
(a) Temperature.

v g
(m
/s

)

49 49.5 50 50.5
306.96

306.98

307

307.02

307.04

no entropy fix

delta=25

delta=50

delta=75

delta=100

x (m)
(b) Temperature (detail).

Figure 5.5: Toumi’s shock tube. Harten’s entropy fix applied to the Roe scheme.
Results for the temperature at t = 0.06 s using a CFL number 0.5. δ = 100 fixes the
discontinuity in the middle of the tube.

Convergence of the Roe scheme

A numerical analysis of this problem shows that some eigenvalues associated to the
Jacobian matrix are equal to zero at the initial time step. This means that the
application of a linearised method like the Roe method may provide unphysically
valid solutions, being necessary the use of an entropy fix as discussed in Section 2.5.3.
Figure 5.5 shows the necessity of adjusting the parameter δ in relation (2.36). In
particular, Figure 5.5(b) shows that the value δ = 100 can be used to avoid this
problem without affecting the accuracy of the scheme.

Figure 5.6 shows the convergence of the Roe scheme at t = 0.06 s for the gas
volume fraction, gas velocity, liquid velocity, temperature and pressure. The results
show clearly how the solution converges when the grid gets finer, for the different
variables of the problem.

Comparison between different schemes

Figure 5.7 shows the comparision between the Lax-Friedrichs, Roe first order and
Roe with the MC limiter schemes.

In order to compare the Roe first order scheme and second order scheme with
the MC limiter, an analysis for the error and the order of convergence have been
made. The norm of the gas volume fraction is the variable utilised to calculate the
error of the scheme

||E (αg)|| = ∆x
∑
∀i
|αg,i − αg,ref,i| , (5.132)
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Figure 5.6: Toumi’s shock tube. Convergence of the Roe scheme. Results at t =
0.06 s using a CFL number 0.5.
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Figure 5.7: Toumi’s shock tube. Results for the LxF, Roe first order and Roe with
the MC limiter schemes at t = 0.06 s using a CFL number 0.5.
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whereas the order of the scheme is given by

sn = ln (||E (α)||n/||E (α)||n−1)
ln (∆xn/∆xn−1) . (5.133)

Using as a reference an accurate solution based on a 10000 grid cells, the results
for the error and covergence of these schemes are presented in table 5.4.

Table 5.4: Toumi’s shock tube problem. Convergence order, sn, and norm of the
error in the gas volume fraction by grid refinement.

Roe 1st order Roe 2nd order MC limiter
∆x (m) ||E (αg)||n sn ||E (αg)||n sn
1.0 2.767× 10−1 - 2.411× 10−1 -
0.5 2.289× 10−1 0.27 1.876× 10−1 0.36
0.25 1.741× 10−1 0.39 1.193× 10−1 0.65
0.167 1.369× 10−1 0.59 8.882× 10−2 0.73
0.125 1.120× 10−1 0.70 7.020× 10−2 0.82
0.1 9.540× 10−2 0.72 5.873× 10−2 0.80

As one can see, the convergence of these schemes differs from the theoric values.
This is consistent with the fact that the solution of the Toumi’s shock tube problem
contains shock waves which deteriorate significantly the order of convergence of both
schemes.

Comparison between the three models

Figure 5.8 shows a comparison made between the four- and six-equation models
resolved by the MUSCL-MUSTA64−4 scheme, using the Van Leer and MC limiters
respectively, on a 20000 grid cells extracted from [11] and the five-equation model
using the Roe scheme with the MC limiter on a 10000 grid cells.

The results show how the solution of the problem becomes different depending
on the model used. Particularly, one should note that the speeds of the travelling
waves get slower in the five-equation model. This is consistent with the fact that
the five-equation model imposes equal temperatures of both phases, when in the
six-equation model the temperature of the gas is much higher than the temperature
of the liquid phase. In the five-equation model the temperature practically matches
the liquid temperature in the six-equation model, as can be verified in Figure 5.8(d).

On the other hand, for the four-equation model the speeds of sound of both
phases have been set, as parameters, close to those obtained in the six-equation
model, as described in [11].

In general, for the other variables plotted in Figure 5.8, the five-equation model
seems to provide solutions between the four- and the six-equation’s.

5.8.3 Water faucet

The water-faucet test constitutes a standard test for one-dimension two-fluid models
and methods for their numerical resolution.

Initially, the state in the water faucet is uniform. Values given in Table 5.5 have
been taken. At the initial time, gravity is turned on

(
gx = 9.81 m/s2) and the liquid
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Figure 5.8: Toumi’s shock tube. Comparison between the four-, five- and six-
equation models. Results at t = 0.6 s using a CFL number 0.5.
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(a) Initial
state.

(b) Transitent. (c) Steady
state.

Figure 5.9: The water-faucet-problem.

column starts thinning as a discontinuity moves towards the exit (see Figure 5.9).
The results are given at t = 0.6 s. The CFL number is 0.9 if not otherwise stated.
The value σ = 1.2 in equation (5.17) has been utilised to assure the hyperbolicity
of the problem.

Table 5.5: Initial state for the water-faucet test problem.

Quantity Symbol (unit) Value
Gas vol. frac. αg (−) 0.2
Pressure p (MPa) 0.1
Gas velocity vg (m/s) 0
Liq. velocity vl (m/s) 10.0

Besides, boundary conditions have been imposed:

• inlet boundary conditions are equal to the initial values for the gas volume
fraction, and the gas and liquid velocities, as well as for the liquid entropy.
The value of the pressure is zeroth order extrapolated;

• a pressure equal to the initial pressure is specified at the outlet. Moreover,
the values of the gas volume fraction, the velocities of both phases and the
entropy of the liquid are zeroth order extrapolated.

Convergence of the Lax-Friedrichs scheme

Figure 5.10 shows the convergence of the Lax-Friedrichs scheme towards the solution
for an increasing number of cells.

Comparison between different schemes

Figure 5.11 shows a comparison made between the Lax-Friedrichs, Roe first order
and Roe with the MC limiter schemes.

It is important to notice the lack of accuracy presented by the Lax-Friedrichs
scheme: even with a grid ten times more refined, the solutions are less accurate than
those provided by the Roe method.
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Figure 5.10: Convergence of the water-faucet problem using the Lax-Friedrichs
scheme. The CFL number was 0.9. Results at t = 0.6 s using a CFL number
0.9.
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Figure 5.11: Comparison on the solutions provided by different schemes for the
water-faucet problem. Results at t = 0.6 s. The CFL number was 0.9 except when
the MC limiter was used, which was changed to 0.5.
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Moreover, a study of the order of convergence and the error have been performed
for the Roe first order and second order schemes. The results use a solution of 10000
grid cells as a reference and are presented in table 5.6.

Table 5.6: Water-faucet problem. Convergence order, sn, and norm of the error in
the gas volume fraction by grid refinement.

Roe 1st order Roe 2nd order MC limiter
∆x (m) ||E (αg)||n sn ||E (αg)||n sn
0.48 4.440× 10−1 - 1.432× 10−1 -
0.24 5.095× 10−1 0.52 5.514× 10−2 1.38
0.12 2.019× 10−1 0.62 1.866× 10−2 1.56
0.06 1.331× 10−1 0.60 1.274× 10−2 0.55
0.03 8.570× 10−2 0.64 5.656× 10−3 1.17
0.012 4.515× 10−2 0.70 2.075× 10−3 1.09

As in the Toumi’s shock-tube problem, the results obtained are far from their
respetive theoretical values even though no shock waves are presented in the solution.
Nevertheless, the solution for the gas volume fraction presented a very sharp profile
near x = 8 m and consequently a degradation of the order of convergence is expected.
On the other hand, these results are closed to those obtained with the Roe scheme
for the four-equation model presented in [8].

Comparison between different models

Figure 5.12 shows a comparison made between the four- and six-equation model
using the MUSCL-MUSTA64−4 scheme and the five-equation model using the Roe
scheme. All the schemes used higher-resolution extension and the MC limiter.

It is possible to appreciate the similitude in the solutions in different variables
presented in Figure 5.12, although the pressure seems to be totally different (Fig-
ure 5.12(e)). That can be explained also by the fact that the speed of the pressure
waves travelling across the domain is slower in the five-equation model compared
to the other two. Since the pressure is oscillating in the inlet at a frequency corre-
sponding to the time spent by the pressure waves to go to the outlet and bounce
towards the inlet, it is admissible that the instant value of the pressure at that time
(t = 0.6 s) does not correspond to the instant value obtained in the other two mod-
els. As well as for the Toumi’s shock tube test, the four-equation model has been set
using, as parameters, the same sound speeds as those provided by the six-equation
model.
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Figure 5.12: Comparison on the solutions provided by the four-, five- and six-
equation models for the water-faucet problem. Results at t = 0.6 s using a CFL
number 0.5.



Chapter 6

Conclusion

The aim of this thesis is the study of two-phases flows. In particular, it has been
focused in the development of a five-equation model and the application of several
numerical schemes in order to improve its numerical resolution. The final results
have been compared to other models previously studied [11].

The results obtained so far have proved that the five-equation model is a good
approximation for the study of two-phase flows. The different numerical schemes
used have also verified to work satisfactorily on this model. Particularly, the Roe
method has demonstrated to be an accurate non expensive numerical scheme.

In the resolution of the moving-discontinuity problem, the parameter ε = 10−12

could be set using the Lax-Friedrichs scheme and it had to be reduced to ε = 10−1

when the Roe scheme was utilised.
Additionally, the water-faucet test have shown that the five-equation model be-

haves in a similar way that the four- and six-equation models do. The only difference
between these models was due to the wave speeds, as it has been discussed previously.

The Toumi’s shock tube problem has been resolved after applying the Harten’s
entropy fix. Differences between the models have also been observed as a conse-
quence of the wave speeds.

Before the end of the Master’s Thesis, the writing of a paper regarding this
subject has been proposed. This paper will summarize the contents of this work.
Additionally, the analytical eigenstructure of the five-equation model will be de-
termined in order to compare the different values of the speed of sound given by
different models discussed in this work.
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